Студопедия — Понятие синуса, косинуса, тангенса и котангенса в прямоугольном треугольнике.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие синуса, косинуса, тангенса и котангенса в прямоугольном треугольнике.

Гипотенуза прямоугольного треугольника — это сторона, лежащая напротив прямого угла. Катеты — стороны, лежащие напротив острых углов.

Катет а, лежащий напротив угла альфа, называется противолежащим (по отношению к углу альфа). Другой катет b, который лежит на одной из сторон угла а, называется прилежащим.

Синус острого угла в прямоугольном треугольнике — это отношение противолежащего катета к гипотенузе:

Косинус острого угла в прямоугольном треугольнике — отношение прилежащего катета к гипотенузе:

Тангенс острого угла в прямоугольном треугольнике — отношение противолежащего катета к прилежащему:

Другое (равносильное) определение – тангенсом острого угла называется отношение синуса угла к его косинусу:

Котангенс острого угла в прямоугольном треугольнике — это отношение прилежащего катета к противолежащему (или, что то же самое, отношение косинуса к синусу):

Синус одного острого угла в прямоугольном треугольнике равен косинусу другого острого угла в нём. И наоборот: косинус одного острого угла в прямоугольном треугольнике равен синусу другого.

Итого: основные соотношения для синуса, косинуса, тангенса и котангенса, которые пригодятся при решении задач:

Вывод: зная любые две стороны, мы можем найти третью сторону треугольника.

Если в задаче на прямоугольный треугольник даны две стороны, сразу же находите третью, пригодится однозначно. Зная все три стороны, вы без труда найдёте значение любой тригонометрической функции (и любой угол).

 

В треугольнике ABC угол C равен 900, . Найдите tg A.

Если в условии нет данных о сторонах и углах, а есть только тригонометрические функции, то пользуйтесь формулами:

Сразу видно, что можно использовать формулу:

Остаётся из основного тригонометрического тождества sin2A + cos2A = 1 найти cosA:

Таким образом:

Ответ: 0,25

 

В треугольнике ABC угол C равен 900, . Найдите tg В.

Здесь необходимо найти тангенс другого острого угла. Как быть?

Воспользуемся формулой тангенса:

Мы знаем, что в прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла, и наоборот, то есть:

Найдём sin B.

Из основного тригонометрического тождества sin2A + cos2A = 1 найдём cos A:

Значит

Таким образом:

Ответ: 0,25

 

В треугольнике ABC угол C равен 900, tg A = 7/24. Найдите sin A.

Используем формулу:

Из неё мы без труда найдём cos2A, а далее используя формулу основного тригонометрического тождества sin2A + cos2A = 1, сможем определить синус:

Вычислим sin A:

Ответ: 0,28

*Обратите внимание, что мы вычислили не косинус, а квадрат косинуса, так как далее для вычислений нам нужен именно квадрат.

 

В треугольнике ABC угол C равен 900, АВ = 8, sin A = 0,5. Найдите BC.

Здесь нам дана сторона (гипотенуза) и синус угла.

Задача в одно действие, используется определение синуса:

Ответ: 4

 

В треугольнике ABC угол C равен 900, АВ = 7, tg = . Найдите ВC.

В данной задаче через функцию тангенса мы можем выразить только катеты, но они нам неизвестны. Поэтому выразим её через функцию косинуса. Далее по определению косинуса, мы сможем найти АС, а затем по теореме Пифагора найдём ВС. Итак:

Следовательно:

По определению косинуса cos A = AC/АВ, значит можем найти АС:

Далее по теореме Пифагора вычислим ВС:

Таким образом, ВС = 4.

Ответ: 4

 

 

В треугольнике ABC угол C равен 900, АС = 24, ВС = 7. Найдите sin A.

Если в задаче известны две стороны, то лучше сразу найти третью сторону по теореме Пифагора. Зная все три стороны в прямоугольном треугольнике, мы всегда без труда найдём значение любой тригонометрической функции любого угла.

По теореме Пифагора:

По определению синуса:

Ответ: 0,28

 

В треугольнике ABC угол C равен 900, , sin A = 11/14. Найдите AB.

По определению косинуса cos A = АС/АВ, значит:

Сторона АС нам известна, найдём cos A.

Из основного тригонометрического тождества:

Таким образом:

Ответ: 28

Способов решения каждой подобной задачи не менее трёх.

 

Решите самостоятельно:

 




<== предыдущая лекция | следующая лекция ==>
Возраст. Инструкция. Прочитайте следующие утверждения | Пояснительная записка

Дата добавления: 2015-08-12; просмотров: 11752. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Studopedia.info - Студопедия - 2014-2023 год . (0.014 сек.) русская версия | украинская версия