Закон Дарси. Движение однородной жидкости в пористой среде определяется силами давления и силами тяжести
Движение однородной жидкости в пористой среде определяется силами давления и силами тяжести. Основное соотношение теории фильтрации - закон Дарси - устанавливает связь между величиной скорости фильтрации вдоль линии тока и силами действующими в жидкости. Рассмотрим закон Дарси на примере схемы опытной установки (Рис. 1.2). Пусть по трубе, диаметром D и длиной L заполненной пористой средой, фильтруется жидкость со скоростью u. Выберем два поперечных сечения 1 и 2. Центры тяжести поперечных сечений расположены на высотах z1 и z2. Давление p1 и p2 в сечениях замеряем пьезометрами. Как и в трубной гидравлике запишем уравнение Бернулли для этих сечений.
где h12 = h(u) - потери напора между сечениями, которые зависят от скорости фильтрации и не могут рассчитываться по формулам трубной гидравлики. Скорости фильтрации жидкости в пористой среде малы, поэтому скоростным напором можно пренебречь. Разрешая уравнение (1.14) относительно скорости фильтрации, получим:
Рассмотрим зависимость скорости фильтрации от расстояния между сечениями и площади поперечного сечения. При прочих равных условиях с увеличением расстояния увеличиваются сопротивления движению жидкости и скорость фильтрации должна уменьшатся. Наиболее простая зависимость - обратно пропорциональная u ~ 1/L. Предположим, что скорость фильтрации зависит от площади поперечного сечения, то во всем образце она будет одна. Проделаем мысленный эксперимент. Разделим поперечное сечение пополам и рассмотрим одну половину. Площадь поперечного сечения изменилась, значит должна измениться и скорость, но в одном и том же реальном образце не могут быть две различные скорости фильтрации. Поэтому наше предположение не верно и скорость фильтрации не зависит от площади. Кроме того, скорость фильтрации зависит от свойств фильтрующейся жидкости и свойств пористой среды. Учтем эти свойства - коэффициентом фильтрации kф. Тогда формула (1.15) запишется:
Эта формула впервые была экспериментально полечена французским инженером Дарси и подтверждается для многих жидкостей и газов в широких пределах изменения скоростей. Но для некоторых жидкостей и значений скоростей фильтрации эта формула не подтверждается. Коэффициентом фильтрации kф используется в тех случаях, когда фильтруется вода. При фильтрации нефти, газа, воды и их смесей желательно учитывать свойства породы и жидкости отдельно. Свойства жидкости характеризуются коэффициентом динамической вязкости μ; и плотностью r. Тогда коэффициент фильтрации можно записать в виде:
где k - коэффициент проницаемости пористой среды, м2; Коэффициент проницаемости зависит только от свойств пористой среды и определяет способность пористой среды пропускать сквозь себя жидкости и газы. Коэффициент проницаемости имеет размерность площади (в СИ [k] = м2 = 10 12 мкм2) и качественно представляет собой площадь поперечного сечения отдельного капилляра. Поэтому проницаемость горных пород очень мала. Например, проницаемость крупнозернистых песчаников, а таких нефтяных или газовых пластов составляет 10-12 - 10-15 м2. На практике до сих пор проницаемость нефтяных и газовых пластов измеряется устаревшими единицами, называемыми Дарси (Д или Дарси). С введением системы единиц СИ использовать эту единицу запрещено. Для перевода в систему СИ используется соотношение 1 Дарси = 1,02 10-12 м2 = 1,02 мкм2. Коэффициент динамической вязкости жидкости зависит только от свойств жидкости и имеет размерность Па×с = кг/м×с. Для большинства реальных жидкостей эта величина большая и используется более мелкая единица 1 мПа×с = 10-3 Па×с. Вязкость воды при температуре 20 С° равна 1 мПа×с. Вязкость нефти в пластовых условиях меняется в очень широком диапазоне. Она может быть меньше вязкости воды при температуре 20 С°, а может быть в десятки или сотки раз больше. Вязкость Ярегской нефти равна 5000 мПа×с, а вязкость нефти пермокарбоновой залежи Усинского месторождения 10000 мПа×с. Вязкость нефтей очень сильно зависит от температуры. В среднем при увеличении температуры на 10 С° вязкость уменьшается в два раза. Это является основой при использовании тепловых методов разработки месторождений. Вязкость газов зависит от состава газа и ориентировочно равна 0,02 мПа×с. С введение коэффициента проницаемости закон Дарси примет вид:
где p* = p + r g z - приведенное давление. Расстояния z от плоскости сравнения до данной точки считается положительным, если точка лежит выше плоскости сравнения, и отрицательной, если ниже. За плоскость сравнения можно принять любую горизонтальную плоскость. Обычно принимают границу газонефтяного (ГНК) или водонефтяного (ВНК) контакта. При движении жидкости в горизонтальных пластах (z = const), поэтому второе слагаемое в приведенном давлении постоянно и при подстановке в формулу обращается в нуль. Поэтому в горизонтальных пластах при движении однородной жидкости приведенное давление можно положить равным давлению в данной точке и знак (*) в законе Дарси можно опустить. Рассмотрим трубку тока, вдоль которой происходит фильтрация жидкости. Обозначим расстояние вдоль вектора скорости у этой трубки через s. Выберем две точки на расстоянии Ds друг от друга и запишем для этих точек закон Дарси:
Получим значение средней скорости на этом участке uср. Если устремить расстояние между точками к нулю, то получим закон Дарси в дифференциальной форме:
В векторной форме закон Дарси запишется:
или в проекциях на оси координат
На практике проницаемость по вертикали в 2 - 10 раз меньше чем по горизонтали. Такая пористая среда называется анизотропной и закон Дарси в этом случае имеет вид:
Для плоскорадиального и радиально-сферического потока Закон Дарси можно записать в виде:
В пластах часто встречаются непроницаемые границы (сбросы). Жидкость двигаться перпендикулярно непроницаемой границе не может, поэтому нормальная к границе скорость равна нуль;. Тогда из закона Дарси следует:
Это означает, что перпендикулярно непроницаемой границе давление не меняется и линии равного давления (изобары) перпендикулярны этой границе.
|