Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Неоднородностью





 

Коэффициенты пьезопроводности находятся по отрезку, отсекаемому экстраполированными прямыми на оси:

. (10.5.10)

Приведенный радиус определяется по формуле:

, (10.5.11)

где

; (10.5.12)

С 0 – добавочное фильтрационное сопротивление, обусловленное перфорацией колонны;

– функция сопротивления при неустановившемся притоке.

Так как при t = t 0 имеем r = R c и æ;1= æ;2, то из (10.5.10) с учетом (10.5.9) следует

. (10.5.13)

Тогда формулы (10.5.6) и (10.5.7) принимают вид:

. (10.5.14)

. (10.5.15)

 

10.5.2. Пласт ограниченный. Для прискважинной зоны справедливо уравнение притока:

, (10.5.16)

где по И.А. Чарному [22]

; (10.5.17)

по Г.И. Баренблатту [43]

. (10.5.18)

Внешнюю зону (см. рис. 10.2) будем считать неограниченной, тогда с учетом (10.5.16) можно записать соотношение:

,

откуда следует

. (10.5.19)

Производя ряд преобразований и решая (10.5.19) относительно R 0, получаем

(10.5.20)

или

. (10.5.21)

Другой вид формул:

(10.5.22)

или

, (10.5.23)

где

. (10.5.24)

Из уравнений (10.5.21) и (10.5.23) имеем

. (10.5.25)

Уравнения (10.5.20)-(10.5.23) относительно являются трансцендентными. Поэтому для нахождения поступим следующим образом. Прологарифмировав уравнение (10.5.21), получаем:

. (10.5.26)

Из (10.5.16) находим

. (10.5.27)

Внося (10.5.23) в (10.5.26) с учетом (10.5.27), получаем окончательно выражение для кольцевой зоны.

(10.5.28)

Производя аналогичные операции с уравнением (10.5.23), получаем

(10.5.29)







Дата добавления: 2015-08-12; просмотров: 541. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия