Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Условная вероятность. Теорема умножения вероятностей





Условной вероятностью Р(В / А) называется вероятность события В, вычисленная в предположении, что событие А уже наступило.
Теорема. Вероятность совместного появления двух событий равна произведению вероятностей одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:
Р(АВ) = Р(А)∙Р(В / А). (2.2)
Два события называются независимыми, если появление любого из них не изменяет вероятность появления другого, т.е.
Р(А) = Р(А/В  или ) Р(В) = Р(В / А). (2.3)
Если события А и В независимы, то из формул (2.2) и (2.3) следует
Р(АВ) = Р(А)∙ Р(В). (2.4)
Справедливо и обратное утверждение, т.е. если для двух событий выполняется равенство (2.4), то эти события независимы. В самом деле, из формул (2.4) и (2.2) вытекает
Р(АВ) = Р(А)∙ Р(В) = Р(А) × Р(В / А  откуда ), Р(А) = Р(В / А).
Формула (2.2) допускает обобщение на случай конечного числа событий А 1, А 2,…, А n:
Р(А 1А 2∙…∙ А n)= Р(А 1)∙ Р(А 2/ А 1)∙ Р(А 3/ А 1 А 2)∙…∙ Р(А n / А 1 А 2А n -1).
Задача 1.11. Из урны, в которой 5 белых и 10 черных шаров, вынимают подряд два шара. Найти вероятность того, что оба шара белые (событие А).
Решение. Рассмотрим события: В – первый вынутый шар белый; С – второй вынутый шар белый. Тогда А = ВС.
Опыт можно провести двумя способами:
1) с возвращением: вынутый шар после фиксации цвета возвращается в урну. В этом случае события В и С независимы:
Р(А) = Р(В)∙ Р(С) = 5/15 ×5/15 = 1/9;
2) без возвращения: вынутый шар откладывается в сторону. В этом случае события В и С зависимы:
Р(А) = Р(В)∙ Р(С / В).
Для события В условия прежние, , а для С ситуация изменилась. Произошло В, следовательно в урне осталось 14 шаров, среди которых 4 белых .
Итак, .
Задача 1.12. Среди 50 электрических лампочек 3 нестандартные. Найти вероятность того, что две взятые одновременно лампочки нестандартные.
Решение. Рассмотрим события: А – первая лампочка нестандартная, В – вторая лампочка нестандартная, С – обе лампочки нестандартные. Ясно, что С = АВ. Событию А благоприятствуют 3 случая из 50 возможных, т.е. Р(А) = 3/50. Если событие А уже наступило, то событию В благоприятствуют два случая из 49 возможных, т.е. Р(В / А) = 2/49. Следовательно,
.
Задача 1.13. Два спортсмена независимо друг от друга стреляют по одной мишени. Вероятность попадания в мишень первого спортсмена равна 0,7, а второго – 0,8. Какова вероятность того, что мишень будет поражена?
Решение. Мишень будет поражена, если в нее попадет либо первый стрелок, либо второй, либо оба вместе, т.е. произойдет событие А+В, где событие А заключается в попадании в мишень первым спортсменом, а событие В – вторым. Тогда
Р(А + В)= Р(А)+ Р(В)– Р(АВ)=0, 7+0, 8–0, 7∙0,8=0,94.
Задача 1.14. В читальном зале имеется шесть учебников по теории вероятностей, из которых три в переплете. Библиотекарь наудачу взял два учебника. Найти вероятность того, что два учебника окажутся в переплете.
Решение. Введем обозначения событий: A – первый взятый учебник имеет переплет, В – второй учебник имеет переплет. Вероятность того, что первый учебник имеет переплет,
P(A) = 3/6 = 1/2.
Вероятность того, что второй учебник имеет переплет, при условии, что первый взятый учебник был в переплете, т.е. условная вероятность события В, такова: P(B / А) = 2/5.
Искомая вероятность того, что оба учебника имеют переплет, по теореме умножения вероятностей событий равна
P(AB) = P(A) ∙ P(B / А) = 1/2·∙ 2/5 = 0,2.
Задача 1.15. В цехе работают 7 мужчин и 3 женщины. По табельным номерам наудачу отобраны три человека. Найти вероятность того, что все отобранные лица окажутся мужчинами.
Решение. Введем обозначения событий: A – первым отобран мужчина, В – вторым отобран мужчина, С – третьим отобран мужчина. Вероятность того, что первым будет отобран мужчина, P(A) = 7/10.
Вероятность того, что вторым отобран мужчина, при условии, что первым уже был отобран мужчина, т.е. условная вероятность события В следующая: P(B/А) = 6/9 = 2/3.
Вероятность того, что третьим будет отобран мужчина, при условии, что уже отобраны двое мужчин, т.е. условная вероятность события С такова: P(C / АВ) = 5/8.
  Искомая вероятность того, что все три отобранных лица окажутся мужчинами, P(ABC) = P(A) P(B / А) P(C / АВ) = 7/10 · 2/3 · 5/8 = 7/24.







Дата добавления: 2015-08-12; просмотров: 4100. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия