Если производится несколько испытаний, причем вероятность события А в каждом испытании не зависит от исходов других испытаний, то такие испытания называют независимыми относительно события А. В разных независимых испытаниях событие А может иметь либо различные вероятности, либо одну и ту же вероятность. Будем далее рассматривать лишь такие независимые испытания, в которых событие А имеет одну ту же вероятность.
Пусть производится п независимых испытаний, в каждом из которых событие А может появиться либо не появиться. Условимся считать, что вероятность события А в каждом испытании одна и та же, а именно равна р. Следовательно, вероятность ненаступления события А в каждом испытании также постоянна и равна 1– р. Такая вероятностная схема называется схемой Бернулли. Поставим перед собой задачу вычислить вероятность того, что при п испытаниях по схеме Бернулли событие А осуществится ровно k раз (k – число успехов) и, следовательно, не осуществится п– раз. Важно подчеркнуть, что не требуется, чтобы событие А повторилось ровно k раз в определенной последовательности. Искомую вероятность обозначим Рп(k). Например, символ Р 5(3) означает вероятность того, что в пяти испытаниях событие появится ровно 3 раза и, следовательно, не наступит 2 раза.
Поставленную задачу можно решить с помощью так называемой формулы Бернулли, которая имеет вид:
.
Задача 1.20. Вероятность того, что расход электроэнергии в продолжение одних суток не превысит установленной нормы, равна р =0,75. Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы.
Решение. Вероятность нормального расхода электроэнергии в продолжение каждых из 6 суток постоянна и равна р =0,75. Следовательно, вероятность перерасхода электроэнергии в каждые сутки также постоянна и равна q= 1– р =1–0,75=0,25.
Искомая вероятность по формуле Бернулли равна
.
Задача 1.21. Два равносильных шахматиста играют в шахматы. Что вероятнее: выиграть две партии из четырех или три партии из шести (ничьи во внимание не принимаются)?
Решение. Играют равносильные шахматисты, поэтому вероятность выигрыша р = 1/2, следовательно, вероятность проигрыша q также равна 1/2. Т.к. во всех партиях вероятность выигрыша постоянна и безразлична, в какой последовательности будут выиграны партии, то применима формула Бернулли.
Найдем вероятность того, что две партии из четырех будут выиграны:
Найдем вероятность того, что будут выиграны три партии из шести:
Т.к. P 4(2) > P 6(3), то вероятнее выиграть две партии из четырех, чем три из шести.
Однакоможно видеть, что пользоваться формулой Бернулли при больших значениях n достаточно трудно, так как формула требует выполнения действий над громадными числами и поэтому в процессе вычислений накапливаются погрешности; в итоге окончательный результат может значительно отличаться от истинного.
Для решения этой проблемы существуют несколько предельных теорем, которые используются для случая большого числа испытаний.
1. Теорема Пуассона
При проведении большого числа испытаний по схеме Бернулли (при n => ∞) и при малом числе благоприятных исходов k (при этом предполагается, что вероятность успеха p мала), формула Бернулли приближается к формуле Пуассона
.
Пример 1.22. Вероятность брака при выпуске предприятием единицы продукции равна p =0,001. Какая вероятность, что при выпуске 5000 единиц продукции из них будет менее 4 бракованных (событие А).
Решение. Пусть А 0, А 1, А 2, А 3 – события, заключающиеся в том, что будет, соответственно, 0, 1, 2 и 3 бракованных продукции из 5000 единиц. По формуле Пуассона
.
Аналогично находим
,
,
.
Откуда
2. Локальная теорема Лапласа
Если вероятность р появления события A в каждом испытании по схеме Бернулли постоянна и отлична от нуля и единицы, то при большом числе испытаний п, вероятность Р п(k) появления события A в этих испытаниях k раз приближенно равна
.
Значения функцииφ(x)приведены в табл. П.1 приложения.
Пример 1.23. Найти вероятность того, что событие А наступит 1400 раз в 2400 испытаниях, если вероятность появления этого события в каждом испытании равна 0,6.
Решение. Т.к. n велико, воспользуемся локальной теоремой Лапласа:
Вычислим x:
Функция – четная, поэтому φ(–1,67) = φ(1,67).
По таблице приложения П.1 найдем φ(1,67) = 0,0989.
Искомая вероятность P 2400(1400) = 0,0989.
3. Интегральная теорема Лапласа
Если вероятность р появления события A в каждом испытании по схеме Бернулли постоянна и отлична от нуля и единицы, то при большом числе испытаний n, вероятность Р п(k 1, k 2) появления события A в этих испытаниях от k 1 до k 2 раз приближенно равна
Рп (k 1, k 2) = Φ (x'') – Φ (x'), где
– функция Лапласа,
Определенный интеграл, стоящий в функции Лапласа не вычисляется на классе аналитических функций, поэтому для его вычисления используется табл. П.2, приведенная в приложении.
Пример 1.24. Вероятность появления события в каждом из ста независимых испытаний постоянна и равна p = 0,8. Найти вероятность того, что событие появится: a) не менее 75 раз и не более 90 раз; б) не менее 75 раз; в) не более 74 раз.
Решение. Воспользуемся интегральной теоремой Лапласа:
Р п (k 1, k 2) = Φ (x'') – Φ(x'), где Ф(x) – функция Лапласа,
а) По условию, n = 100, p = 0,8, q = 0,2, k 1 = 75, k 2 = 90. Вычислим x'' и x':
Учитывая, что функция Лапласа нечетна, т.е. Ф(- x) = – Ф(x), получим
P 100(75;90) = Ф (2,5) – Ф(–1,25) = Ф(2,5) + Ф(1,25).
По табл. П.2. приложения найдем:
Ф(1,25) = 0,3944. Ф(2,5) = 0,4938;
Искомая вероятность
P 100(75; 90) = 0,4938 + 0,3944 = 0,8882.
б) Требование, чтобы событие появилось не менее 75 раз, означает, что число появлений события может быть равно 75, либо 76, …, либо 100. Т.о., в рассматриваемом случае следует принять k 1 = 75, k 2 = 100. Тогда
.
По табл. П.2. приложения найдем Ф(1,25) = 0,3944; Ф(5) = 0,5.
Искомая вероятность
P 100(75;100) = (5) – (–1,25) = (5) + (1,25) = 0,5 + 0,3944 = 0,8944.
в) Событие – «А появилось не менее 75 раз» и «А появилось не более 74 раз» противоположны, поэтому сумма вероятностей этих событий равна 1. Следовательно, искомая вероятность
P 100(0;74) = 1 – P 100(75; 100) = 1 – 0,8944 = 0,1056.