Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Закон Пуассона.





Закон приближения биномиального распределения в случае, когда р – весьма мала, n – весьма велико.

(*)

Пусть , , но .

(1) , .

Распределение дискретной случайной величины согласно (1) называется распределением Пуассона. Это распределение зависит только от а.

Пример.

Завод отправил на базу 5000 изделий. Вероятность того, что в пути изделие повредится – 0,0002. найти вероятность того, что на базу прибудут 3 негодных изделия.

p =0,0002; k =3; n =5000

.

 

§4. Непрерывные случайные величины.

 

Под непрерывной случайной величиной понимают случайную величину, возможные значения которой сплошь заполняют некоторый промежуток.

Определение 1. Пусть F (x) – функция распределения случайной величины Х, F (x) – дифференцируема: .

Случайная величина называется непрерывной, если неотрицательная функция f (x), интегрируемая на всей числовой оси и такая, что .

Определение 2. Функция называется плотностью распределения и плотностью вероятностей непрерывной случайной величины.

(*)

В числителе вероятность того, что случайная величина принимает значение в интервале длиной Δх. Отношение под знаком lim задаёт вероятность, приходящуюся на единицу длины. Беря предел, получим плотность вероятностей.

График функции f (x) называется кривой распределения. Заметим, что f (x) существует только для непрерывной случайной величины.

Из (*) ;

Отбрасывая бесконечно малую более высокого порядка, получаем приближённое значение.

Из (1) .

Теорема.

Вероятность того, что непрерывная случайная величина принимает значение в интервале от α; до β; .

Доказательство.

F (x) – первообразная для f (x)

По формуле Ньютона-Лейбница

.

Геометрически:

Свойства f ( x ):

1°.

Доказательство: , т.к. по свойству 3 F (x) – неубывающая. Тогда .

2°.

Геометрически 1° и 2° означают, что график функции f (x) расположен выше либо на оси ОХ и площадь под кривой f (x)=1.

Пример.

Задана функция

1) определить а; 2) построить график f (x); 3) определить F (x) и график; 4) .

1) Найдём а:

2)

3)

4) .

 

§5. Числовые характеристики случайных величин.

 

Наиболее полной характеристикой случайной величины является закон её распределения, он даёт все сведения о случайной величине: какие возможные значения она может принимать и с какими вероятностями. Закон распределения случайной величины задаётся функцией распределения F (x) или функцией плотности распределения f (x). На практике часто закон распределения неизвестен, а с другой стороны, нас интересуют более частные сведения, поэтому пользуются более общими характеристиками случайных величин, которые выражают наиболее существенные особенности распределения. Их называют числовыми характеристиками случайной величины:

1) среднее значение или математическое ожидание случайной величины

2) дисперсия случайной величины

3) моменты случайных величин

Каждая из этих характеристик с определённой стороны характеризует случайную величину.







Дата добавления: 2015-08-12; просмотров: 565. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия