Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Математическое ожидание.





1) Дискретная случайная величина.

Пусть дан ряд распределения дискретной случайной величины

x1 x2 xn
p1 p2 pn

Математическим ожиданием дискретной случайной величины называется сумма попарных произведений возможных значений случайной величины на их вероятности.

Выясним вероятностный смысл математического ожидания.

Пусть произведено n опытов, в результате которых случайная величина X приняла значения:

x1m1 раз

x2m2 раз

xkmk раз

m1 + m2 +…+ mk = n

Подсчитаем сумму всех значений, которые случайная величина приняла в n опытах.

x1m1 + x2m2 +…+ xkmk – сумма всех значений случайной величины за n опытов. Вычислим среднее значение, которое принимает одна величина.

- частота события

При большом n частоты будут приближаться к соответствующим вероятностям ()

При большом числе опытов среднее значение величины равно значению её математического ожидания.

На числовой оси возможные значения случайной величины располагают слева и справа от математического ожидания. Таким образом, математическое ожидание характеризует расположение распределения на числовой оси.

2) Непрерывная случайная величина.

Рассмотрим непрерывную случайную величину, у которой известна плотность распределения f (x), и которая принимает возможные значения на [ a, b ].

Рассмотрим разбиение [ a, b ] точками деления x0, x1, x2, …, xk, xk+1, …, xn = b

Δxk – длина k -го отрезка разбиения

- параметр разбиения

Если λ; достаточно мало, то приближённо можно считать, что .

Таким образом, мы фактически можем перейти от непрерывной случайной величины к дискретной случайной величине, которая может принимать возможные значения

 

x1 x2 xn
f (x1) Δx1 f (x2) Δx2 f (xn) Δxn

Чем меньше λ;, тем точнее математическое ожидание характеризует значение непрерывной случайной величины.

Чтобы получить точное равенство, перейдём к

причём в правой части равенства предела стоит интегральная сумма для на [ a, b ].

Так как по определению функция f (x) интегрируема всюду, то предел интегральной суммы существует и равен

.

Если случайная величина принимает значения на всей числовой оси, то математическое ожидание нужно считать на всей числовой оси.

Определение. Математическим ожиданием непрерывной случайной величины называется интеграл , при этом предполагается, что несобственный интеграл сходится абсолютно, т.е. существует .

Свойства математического ожидания:

1°. .

2°. .

3°. .

4°. , если X и Y – независимые случайные величины.

 







Дата добавления: 2015-08-12; просмотров: 541. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия