Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Система двох дискретних випадкових величин.





На одному й тому самому просторі елементарних подій W можна визначити не одну, а кілька випадкових величин. Така потреба постає, наприклад, коли досліджуваний об’єкт характеризується кількома випадковими параметрами.

Сукупність випадкових величин які розглядаються спільно, називається системою випадкових величин. Якщо тобто розглядається система двох випадкових величин , то геометрично її можна тлумачити як випадкову точку з координатами на площині або як випадковий вектор, складові якого — випадкові величини

Одночасна поява внаслідок проведення експерименту n випадкових величин (X1, X2, …, Xn) з певною ймовірністю являє собою n-вимірну випадкову величину, яку називають також системою n випадкових величин, або n-вимірним випадковим вектором.

_________________________________

 

31. Закон розподілу ймовірностей дискретної двомірної величини.

Законом розподілу двох дискретних випадкових величин називають перелік можливих значень Y = yi , X = xj та відповідних їм імовірностей спільної появи.

У табличній формі цей закон має такий вигляд:

X=xj Y=yi x1 x2 xm pyi
y1 p11 p12   p1m py1
y2 p21 p22   p2m py2
y3 p31 p32   p3m py3
yk pk1 pk2 pkm pym
pxj px1 px2 pxm  

Тут використано такі позначення

Умова нормування має такий вигляд:

_________________________________

 


32. Коефіцієнт кореляції та його властивості.

Під час вивчення системи двох і більше випадкових величин доводиться з’ясовувати наявність зв’язку між цими величинами та його характер. З відповідною метою застосовують так званий кореляційний момент:

У разі Κху = 0 зв’язок між величинами Х та Y відсутній.

Тісноту кореляційного зв’язку характеризує коефіцієнт кореляції:

, або .

Якщо випадкові величини Х та Y є незалежними, то Κху = 0 і rху = 0. Рівність нулеві rху є необхідною, але не достатньою умовою незалежності випадкових величин.

Дві випадкові величини Х і Y називають некорельованими, якщо rху = 0, і корельованими, якщо rху ¹ 0.

_________________________________

 

33. Функція розподілу ймовірностей системи двох випадкових величин та її властивості.

Функцією розподілу ймовірностей системи двох випадкових величин (Х, Y) називають таку функцію двох аргументів х, у, яка визначає ймовірність спільної появи подій (X < x) I (Y < y):

F(x,y) = P((X < x) I (Y < y)).

Властивості F(x, y)

1. 0 £ F(x, y) £ 1, оскільки 0 £ P((X < x) I (y < y)) £ 1.

2. Якщо один із аргументів F(x, y) прямує до + , то функція розподілу системи прямує до функції розподілу одного аргументу, що не прямує до + , а саме:

3.

4.

5. F(x, y) є неспадною функцією аргументів х і у.

Р(а < Х < b, Y < y) = F(b, y) – F(a, y);

P(X < x, c < Y < d) = F(x, d) – F(x, c).

6. Імовірність влучення точки (Х, Y) в довільний прямокутник (a < X< b, c < Y < d) обчислюємо так:

P(a < x < b, c < y < d) = F(b, d) + F(a, c) – F(a, d) – F(b, c).

_________________________________

 


34. Щільність розподілу двомірної випадкової величини.

Характеристикою системи неперервних випадкових величин є щільність імовірностей.

Функція f (x, y) може існувати лише за умови, що F (x, y) є неперервною за аргументами х і у та двічі диференційовною.

Властивості f (x, y)

1. Функція f (x, y) ³ 0, оскільки F(x, y) є неспадною відносно аргументів х і у.

2. Умова нормування системи двох неперервних випадкових величин (Х, Y) така:

.

3. Імовірність розміщення системи змінних (х, у) в області обчислюється так:

4. Функція розподілу ймовірностей системи двох змінних визначається з рівняння

5. Якщо , то

_________________________________

35. Основні числові характеристики системи двох неперервних випадкових величин (Х,У).

_________________________________

36. Ймовірність влучення випадкових точок у прямокутник.

Імовірність влучення точки (Х, Y) в довільний прямокутник (a < X< b, c < Y < d) обчислюємо так:

P(a < x < b, c < y < d) = F(b, d) + F(a, c) – F(a, d) – F(b, c).

Доведення.

Розглянемо такі випадкові події:

A = (X < b, Y < d); B = (X < a, Y < c); C = (a < X < b, Y < c); D = (X < a, c < Y < d); E = (a < X < b, c < Y < d).

Оскільки випадкові події B, C, D, E несумісні, маємо:

A = B U C U D U E.

P(A) = P(B U C U D U E) = P(B) + P(C) + P(D) + P(E).

P(x < b, y < d) = P(x < a, y < c) + P(a < x < b, y < c) + P(х < a, c < у < d) + P(a < x < b, c < y < d).

F(b, d) = F(a, c) + F(b, c) – F(a, c) + F(a, d) – F(a, c) + P(a<X<b,c<Y<d);

P(a<X<b,c<Y<d)=F(b,d)+F(a,c)–F(a, d) – F(b, c), що й треба було довести.

_________________________________


37. Функція 1-ого випадкового аргументу.

Функцією випадкового аргументу Х називають таку випадкову величину Y, яка набуває значення Y = у = (х) щоразу, коли Х = х, де є невипадковою функцією. Якщо Х є дискретною випадковою величиною, то і функція випадкового аргументу Y = (х) буде дискретною.

Коли Х є неперервною випадковою величиною, то і Y = (х) буде неперервною.

1) Нехай закон дискретної випадкової величини Х задано таблицею:

Х = хi x1 x2 ............ xk
P(X = xi) = pi p1 p2 ............. pk

Тоді закон розподілу випадкової величини Y = (х) матиме такий вигляд:

Y = α (хi) α (х1) α (х2) .......... α (хk)
P(Y = α (хi) = рi p1 p2 ......... pk

Умова нормування для f (у):

.

За знайденою f (у) функцією розподілу ймовірностей визначається

.

_________________________________

38. Математичне сподівання функції 1-ого випадкового аргументу.

Функцією випадкового аргументу Х називають таку випадкову величину Y, яка набуває значення Y = у = (х) щоразу, коли Х = х, де є невипадковою функцією. Якщо Х є дискретною випадковою величиною, то і функція випадкового аргументу Y = (х) буде дискретною.

Коли Х є неперервною випадковою величиною, то і Y = (х) буде неперервною.

Математичне сподівання дискретного випадкового аргументу

Математичне сподівання функцій неперервного випадкового аргументу:

;

_________________________________

 

39. Функції 2-х випадкових аргументів.

У загальному випадку функцію двох аргументів Х і Y можна позначити як

,

де є невипадковою функцією.

Якщо Х та Y є дискретними випадковими величинами, то і Z буде дискретною. Якщо Х та Y є неперервними, то і Z буде неперервною.

_________________________________

 


40. Математичне сподівання суми двох випадкових аргументів.

Математичне сподівання.

М (Х + Y) = М (Х) + М (Y). (1)

Висновок 1.

М(АХ+ВY+С)=АМ(Х)+ВМ(Y)+С.

А, В, С — деякі сталі.

Висновок 2.

.

_________________________________

 

41. Біноміальний розподіл.

Цілочислова випадкова величина X має біноміальний закон розподілу, якщо ймовірність її можливих значень обчислюється за формулою Бернуллі:

При перевірці виконання умови нормування використовується формула біному Ньютона, тому закон розподілу називають біноміальним:

.

Імовірнісна твірна функція для біноміального закону

.

Основні числові характеристики:

.

;

.

_________________________________

 

42. Закон розподілу неперервної випадкової величини. Рівномірний розподіл.

Цілочислова випадкова величина Х має рівномірний закон розподілу, якщо ймовірності її можливих значень обчислюються за формулою:

. (1)

Імовірнісна твірна функція:

.

Числові характеристики:

.

_________________________________

 

43. Нормальний розподіл.

Випадкова величина Х має нормальний закон розподілу ймовірностей, якщо

f (х) = ,

де а = М (X), s = s (X). Отже, нормальний закон визначається звідси параметрами а і s і називається загальним.

Тоді

F(x)= dx. (2)

 

Для нормального закону Мо=Ме=а.

Загальний нормальний закон позначають: N (a; s).

_________________________________

 








Дата добавления: 2015-08-12; просмотров: 3620. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия