Группировка электронов в пространстве дрейфа
Электрон, пройдя первый зазор в момент t1, войдет во второй зазор в момент t2: t2 = t1 + s / (v0 + v1sinwt1), (1-7) где индексы 1 и 2 приписаны соответственно порядку самих резонаторов. Вынося в (1-7) за скобки параметр s/v0, а затем, проведя его разложение по малому параметру v1/v0 и отбросив члены выше первого порядка, получаем: t2 = t1 + (s/v0)[1 + (v1/v0)sinwt1] -1» t1 + (s/v0) - (sv1/v02)sinwt1. (1-8) Умножим (1-8) на w и введем т.н. параметр группировки X: X = wsv1/v02 = (ws/v0) (v1/v0), (1-9) который с помощью (1-6) и нового обозначения Q = ws/v0 - угла пролета в пространстве дрейфа преобразуем к виду: X = QMU1/2U0. (1-10) Используя введенные обозначения, перепишем уравнение (1-8) в виде wt2 - Q = wt1 - Xsinwt1. (1-11) Уравнение (1-11) устанавливает связь фазы прибытия электрона во 2-й зазор от фазы его вхождения в 1-й зазор. Если в 1-м зазоре модулирующее поле отсутствует U1= 0 и X = 0, то указанные фазы связаны линейно, в общем случае U1 ¹ 0 и X ¹ 0 эта связь нелинейна, что иллюстрируется Рис.1-3а для параметров X = 0; 0,5; 2,0. С ростом X график функции (1-11) все сильнее отклоняется от прямой и при больших X становится неоднозначным. Значение сказанного станет понятным при рассмотрении формы волн конвекционного тока в пространстве дрейфа. Чтобы подойти к этому рассмотрению воспользуемся законом сохранения заряда, сделав предположение о том, что электроны по пути следования не теряются на сетках или стенках дрейфового пространства. Пусть некоторый элемент заряда dq, взятый на интервале dx, проходит последовательно два сечения x1 и x2 в моменты времени t1 и t2. Плоскость x1 он пересекает за время dt1 и переносит ток i1, а плоскость x2 - за время dt2 и переносит ток i2. dq = i1dt1 = i2dt2 (1-12) Перепишем это соотношение i2 = i1(dt1/dt2) = i1/(dt2/dt1), (1-13) затем, взяв производную от зависимости (1-11) dt2/dt1 = 1 - X coswt1, подставляем ее в (1-13) и производим замену i1 на I0, значение тока еще не возмущенное модуляцией, связывая тем самым сечение x1 с зазором первого резонатора: i2 = I0/(1 - X coswt1) или i2/I0 = |1 - X coswt1| -1. (1-14) Выражение (1-14) справедливо для произвольной координаты x2 дрейфового пространства, нужно лишь иметь в виду, что X зависит от угла пролета Q. Модуль в правой части окончательного выражения (1-14) */ исключает возможные ________________________________________________________________________ *Примечание: Выражение в знаменателе (1-14) представляет собой проекцию трохоиды на ось, перпендикулярную направлению качения оружности. отрицательные значения тока i2, для случаев, когда X > 1. Из (1-14) следует, что ток в заданной координате x2 изменяется периодически с частотой w, но несинусоидально. Вид зависимости тока от времени представлен на Рис.1-4 для X = 0,5; 1,0 и 1,5. Сдвоенные импульсы тока при X > 1 являются следствием неоднозначности зависимости t2= f(t1) (Рис.1-3а) и связаны с опережением одних групп электронов другими. Заметим, что даже слабую модуляцию скорости электронов можно компенсировать увеличением пути дрейфа s, чтобы достигнуть X ³ 1. Каким должен быть оптимальный угол пролета в пространстве дрейфа Qопт? Электроны, выйдя из первого резонатора, будут группироваться в пространстве дрейфа относительно того электрона, который пройдет зазор первого резонатора в момент перехода переменного напряжения в нем через 0, но при положительной производной, поскольку медленные электроны, вышедшие из зазора до этого момента, будут догонять более быстрые, вышедшие позднее. Сформированный в пространстве дрейфа сгусток должен входить во второй резонатор в фазе тормозящего поля, чтобы отдать энергию на возбуждение колебаний, т.е. Qопт = (ws/v0)опт = (3/2)p - yос + 2pn = 2p(n + 3/4) - yос, n = 0, 1, 2... (1-15) Здесь yос - учитывает сдвиг фаз колебаний между резонаторами за счет обратной связи, если клистрон используется в качестве генератора. Уравнение позволяет найти U0 опт при заданном s, и наоборот - sопт при заданном U0.
|