Возбуждение второго резонатора конвекционным током
Конвекционный ток в зазоре 2-го резонатора может быть представлен суммой гармоник частоты w. Опуская математические подробности, запишем разложение мгновенного конвекционного тока модулированного пучка в виде ряда Фурье: i2(t2) = I0[1 + 2 Jn(nX)cos n(wt2 - qs)], (1-16) где Jn(nX) - функции Бесселя первого рода, n - номер гармоники. В частности амплитуда тока произвольной гармоники: I2n = 2I0Jn(nX). (1-17) Амплитуда тока n-ой гармоники, наведенного во 2-м резонаторе n-ой гармоникой конвекционного тока (1-16), численно равна амплитуде (1-17), умноженной на коэффициент взаимодействия электронного пучка с зазором M2n при частоте данной гармоники, который может быть определен согласно (1-3’). Тогда мощность, отбираемая 2-м резонатором из пучка, по законам электротехники: P2n = (1/2) [M2nI2n ]навU2n cosj, (1-18) где U2n - амплитуда напряжения в зазоре выходного резонатора, j - фазовый сдвиг между наведенным током и напряжением из-за влияния импеданса внешней нагрузочной цепи. Мощность постоянного тока, подводимая к ускоряющему электроду I0U0, при малом параметре U1/2U0 не расходуется на модуляцию пучка по скорости, так как количество ускоренных электронов примерно равно количеству замедленных. Эта мощность расходуется лишь на возбуждение наведенных токов в выходном резонаторе и оставшаяся мощность пучка - в аноде. Беря отношение (1-18) к мощности постоянного тока источника, получаем электронный к.п.д. клистрона: hэл = (U2n/U0)M2nJn(nX)cosj (1-19) Оценим максимально возможный электронный к.п.д. Все входящие в (1-19) сомножители - независимы, поэтому каждый из них может принимать наибольшее значение, тогда пусть: (U2n/U0) = 1; для малого пролетного угла M2n» 1; j = p, так как для отдачи энергии пучок должен двигаться против тормозящего поля, тогда hэл макс = {Jn(nX)}макс. (1-20) Оптимальная величина параметра X, отвечающая hэл макс, для любого n больше 1.
Таблица1 . Максимальный электронный к.п.д. 2-хрезонаторного клистрона на гармониках частоты модуляции электронного потока на входном резонаторе.
Пролетные клистроны успешно используются в качестве усилителей мощности при неизменной амплитуде и частоте входного сигнала. При этом удается исключить влияние нелинейных искажений, добиться высокого к.п.д. при оптимальном группировании. Для дополнительного повышения к.п.д. пролетные клистроны делают многорезонаторными (Рис.1-1б). Каждый следующий резонатор одновременно играет две роли: улавливателя по отношению к первому резонатору и группирователя по отношению к третьему (их может быть три-четыре и более). Максимально возможный электронный к.п.д. многорезонаторного пролетного клистрона достигает 74%. Импульсные многорезонаторные клистроны в дециметровом диапазоне достигают мощности порядка десятков МВт, а в сантиметровом диапазоне - доли МВт. Напряжение питания таких клистронов доходит до сотен кВ, а реальный к.п.д - до 40 ¸ 50%. Большое содержание высших гармоник в конвекционном токе пучка позволяет их использовать также в качестве умножителей частоты. Пролетный клистрон усилитель можно сделать генератором если осуществить положительную обратную связь между резонаторами: улавливателем и группирователем.
|