Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функция распределения и ее свойства.





Наиболее общей формой закона распределения, пригодной для всех случайных величин (как дискретных, так и недискретных) является функция распределения.

Функцией распределения случайной величины X называется вероятность того, что она примет значение меньшее, чем аргумент функции x:

F(x)=P{X<x}.

(F1) она не убыва ет: если то ; Доказательство свойство: для любых чисел

X1<X2 событие влечет событие т.е Но вероятность монотонная функция событий, поэтому

 

(F2) cуществуют пределы и Заметим сначала, что существование пределов в свойствах (F2), (F3) вытекает из монотонности и ограниченности функции. Остается лишь доказать равенства

, и Для этого в каждом случае достаточно найти предел по какой-нибудь подпоследовательности, так как существование предела влечёт совпадение всех частичных пределов Докажем, что при . Рассмотрим вложенную убывающую последовательность событий: Пересечение В всех этих событий состоит из тех и только тех w, для которыхE(w) меньше любого вещественного числа. Но для любого элементарного исхода w значениеE(w) вещественно, и не может быть меньше всех вещественных чисел. Иначе говоря, пересечение событий Bn не содержит элементарных исходов, т.е. . По свойству непрерывности меры,

при

Покажем, что при т.е . Обозначим черезBn собитие События Bn вложены: а пересечение B этих событий снова пусто — оно означает, что E больше любого вещественного числа. По свойству непрерывности меры, (F3) она в любой точке непрерывна слева:

Достаточно доказать, что при Иначе говоря, доказать сходимость к нулю следующей разности:

 







Дата добавления: 2015-08-12; просмотров: 429. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия