Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Расчет кратких таблиц смертности





Для анализа состояния и тенденций уровня смертности чаще всего бывает достаточным использование кратких таблиц смертности, т.е. по пятилетним возрастным интервалам. Для их построения необходимо располагать пятилетними возрастными коэффициентами смертности или данными для расчета таких коэффициентов. Обычно достаточно рассчитать лишь одну колонку таблиц, l x, q x или p x, а все остальные колонки, кроме L x, рассчитываются на основе взаимосвязей показателей таблиц смертности, представленных выше.

Для перехода от возрастных коэффициентов смертности т х к вероятностям смерти q x используется обычно одна из двух формул:

(6.5.11)

(6.5.12)

где q x — вероятность смерти в возрасте «х»; т х — возрастной коэффициент смертности; n — длина возрастного интервала.

Все остальные формулы показаны выше.

Построим для примера краткие таблицы смертности мужского населения России за 1995 г. и рассмотрим алгоритм расчета (см. таблицу 6.5).

1. Из двух методов расчета по формулам (6.5.10) и (6.5.1 1) выберем второй метод — по показательной функции, потому, что она лучше, чем первая, учитывает кривизну изменения чисел доживающих l x. При этом вместо колонки вероятностей смерти q x будем рассчитывать колонку ее дополнения до единицы, т.е. вероятность дожития до следующего возраста, p x. Таким путем мы избежим большого числа вычитаний из единицы.

2. Но сначала нужно возрастные коэффициенты смертности разделить на 1000 (т.е. перевести их из промилле в доли единицы) и перемножить на длину соответствующих возрастных интервалов. Для первого возрастного интервала 0 лет множитель будет равен 1, для второго — 1 — 4 года — 4, для остальных интервалов — 5.

3. Затем, возводя основание натурального логарифма «е» в отрицательную степень, равную произведению возрастного коэффициента смертности на длину возрастного интервала, находим значения колонки вероятностей дожития p x (колонка 3 в таблице 6.5).

4. Следующая колонка — чисел доживающих «l x». Первое значение числа доживающих для возраста 0 лет — основание таблицы смертности 100000 (константа, которую всегда нужно помнить). Умножив 100000 на число доживающих p 0, получаем число доживающих l1, умножив l 1 на p 1, получаем l 2, и так — все значения колонки чисел доживающих до возраста «85 лет и старше».

5. Затем рассчитываем значения колонки d x как разность между соседними числами доживающих, т.е. 100000 – l 0 = d 0; l 1 – l 2 = d 1, и т.д.

6. Далее рассчитываем числа живущих. Для всех возрастных интервалов, кроме первых двух ранних детских, числа живущих рассчитываются по формуле L x = dx / т х. Для первых двух возрастных интервалов — 0 и1—4 — числа живущих определяются иначе ввиду резкой кривизны изменения линии дожития на этом участке. Так число живущих в возрасте 0 лет определяется уравнением L 0 = l 0 - 2 / 3 d x. Число живущих в следующем детском возрастном интервале 1—4 года определяется из следующего уравнения 4 L 1 = 1,704 l 1 + 2,533 l 5 - 0,237 l 10. Число живущих в так называемом открытом возрастном интервале — 85 лет и старше — определяется по формуле L 85+ = l 85 / m 85+. Поскольку все дожившие до 85 лет раньше или позже умрут после этого возраста, d 85+ = l 85.

Таблица 6.5
Расчет таблиц смертности мужского населения России в 1995 году

Возрастные группы (лет) тx (в долях единицы) nmx /1000 px= exp(- nmx) lx dx
А          
  0,0205 0,0205 0,97971    
1 — 4 0,0012 0,0048 0,99521    
5—9 0,0007 0,0035 0,99651    
10—14 0,0007 0,0035 0,99651 97,161  
15—19 0,0024 0,0120 0,98807    
20—24 0,0043 0,0215 0,97873    
25—29 0,0054 0,0270 0,97336    
30—34 0,0074 0,0370 0,96368    
35—39 0,0100 0,0500 0,95123    
40—44 0,0141 0,0705 0,93193    
45—49 0,0193 0,0965 0,90801    
50—54 0,0273 0,1365 0,87241    
55—59 0,0340 0,170 0,84366    
60—64 0,0471 0,2355 0,79018    
65—69 0,0613 0,3065 0,73602    
70—74 0,0779 0,3895 0,67740    
75—79 0,1091 0,5455 0,57955    
80—84 0,1555 0,7775 0,45955    
85 и старше 0,2252        

Таблицы 6.5 (продолжение)

Возрастные группы (лет) Lx Tx ex exоф Разность еx– еxоф
А          
      58,17 58,27 - 0,10
1—4     58,37 58,49 - 0,12
5—9     54,64 54,78 - 0,14
10—14     49,82 49,97 - 0,15
15—19     45,00 45,12 - 0,12
20—24     40,51 40,64 - 0,13
25—29     36,33 36,48 - 0,15
30—34     32,26 32,40 - 0,14
35—39     28,38 28,51 - 0,13
40—44     24,71 24,85 - 0,14
45—49     21,34 21,47 - 0,13
50—54     18,25 18,43 - 0,18
55—59     15,56 15,70 - 0,14
60—64     12,99 13,13 - 0,14
65—69     10,81 10,79 +0,02
70—74     8,83 8,74 +0,09
75—79     6,92 6,96 - 0,04
80—84     5,30 5,47 - 0,17
85 и старше     3,97 4,23 - 0,26

7. Значения колонки чисел живущих в возрастах старше «x» - Т х — получаются суммированием чисел живущих L x с последовательным наращиванием суммы от конца ряда к началу.

8. Теперь путем деления чисел живущих в возрасте «х» лет и старше — T x — на соответствующие числа доживающих — l x — определяется средняя ожидаемая продолжительность предстоящей жизни — е x (колонка 8).

9. В колонке 9 показаны значения средней продолжительности жизни для всех возрастов, рассчитанные Госкомстатом России, а в колонке 10 — разность между значениями средней продолжительности жизни, рассчитанными нами по кратким таблицам смертности и сотрудниками госстатистики — по полным таблицам. Как видим, разница невелика, можно даже сказать — несущественна.







Дата добавления: 2015-08-12; просмотров: 436. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия