Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дать определения для всех частотных характеристик.


КОНТРОЛЬНАЯ РАБОТА

 

По дисциплине: «Автоматизация производственных процессов и производств»

 

На тему: «Расчет динамических и частотных характеристик объекта»

(наименование темы)

 

Отметка о зачете ____________________________________________ _______ (дата)

 

Руководитель __________ _____________ Коряковская Н.В.

(должность) (подпись) (и., о., фамилия)

____________

(дата)

 

Архангельск

2009г.

Лист для замечаний

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ВАРИАНТ № 33

Структурная схема объекта имеет вид:

x(t) y(t)

 


Передаточные функции соединения равны соответственно:

 

Определить в общем и частном виде:

1. Дифференциальное уравнение соединения;

2. Передаточные функции для разомкнутой и замкнутой системы;

3. Записать характеристическое уравнение разомкнутой и замкнутой системы;

4. Выражения для временных характеристик разомкнутой системы. Построить графики h(t),w(t).

5. Выражения для частотных характеристик разомкнутой системы. Построить графики A(w),j(w),W(jw).

6. Дифференциальное уравнение для замкнутой системы.

 

 

Примечания: необходимые для выполнения работы теоретические сведения и определения имеются в методических указаниях по «Автоматизации технологических процессов и производств» для студентов заочного факультета.

 

Объект представляет собой последовательное соединение идеального дифференцирующего звена с передаточной функцией и апериодического звена 1-го порядка с передаточной функцией .

Дать определения: последовательного соединения, идеального дифференцирующего звена, апериодического звена 1-го порядка, передаточной функции, передаточных функций разомкнутой и замкнутой системы.

Последовательным называется соединение двух или нескольких звеньев, при котором сигнал на выходе предыдущего звена является входным для последующего.

 

Идеальное дифференцирующее звено описывается уравнением:

 

Апериодическое звено 1-го порядка описывается дифференциальным уравнением: ;

передаточной функцией: ,

где к- коэффициент передачи, Т- постоянная времени звена,с.

 

Передаточной функцией звена (системы) называется отношение изображения по Лапласу выходной величины к изображению по Лапласу входной величины при условии, что все остальные воздействия равны нулю.

 

Передаточная функция разомкнутой системы по задающему воздействию находится путём перемножения передаточных функций всех звеньев прямой цепи регулирования.

 

Передаточная функция замкнутой системы находится из выражения:

,

где W(p)- передаточная функция разомкнутой системы,

M(p),N(p),D(p)- полиномы от комплексной переменной р.

Так как соединение последовательное, то передаточную функцию разомкнутой системы получим как произведение передаточных функций звеньев:

(1)

Подставим в (1) значения параметров объекта и получим выражение для передаточной функции разомкнутой системы в частном виде:

 

 

Передаточную функцию замкнутой системы найдем по формуле:

(2)

Подставим в (2) параметры объекта, получим передаточную функцию замкнутой системы в частном виде:

** Дать определения характеристического уравнения разомкнутой и замкнутой системы.

Характеристическим уравнением разомкнутой (замкнутой) системы называется полином знаменателя передаточной функции разомкнутой (замкнутой) системы, приравненный нулю (N(p)=0, D(p)=0).

Согласно определению, характеристическое уравнение разомкнутой системы найдем из выражения (1):

и в частном виде:

Характеристическое уравнение замкнутой системы:

и в частном виде:

Дифференциальное уравнение соединения найдем из передаточной функции разомкнутой системы (1):

Последнее выражение есть дифференциальное уравнение соединения в общем виде. В частном виде, получим следующее выражение:

Найдем временные характеристики соединения:

** Дать определения переходной и весовой функции.

Переходной характеристикой h(t) звена (системы) называется его реакция на воздействие в виде единичной ступенчатой функции при нулевых начальных условиях.

Весовой функцией звена (системы) называется его реакция на воздействие в виде единичной импульсной функции при нулевых начальных условиях.

 

Переходная функция:

В частном виде:

(3)

Весовая функция:

В частном виде:

(4)

По выражениям (3), (4) строим графики переходной и весовой функций.

 

а) Переходная функция б) весовая функция

 

Рисунок – 1

 

Дать определения для всех частотных характеристик.

Амплитудно – частотной характеристикой (АЧХ) A(w) называется зависимость отношения амплитуды выходного сигнала к амплитуде входного сигнала от частоты w.

 

Фазо-частотной характеристикой (ФЧХ) называется зависимость сдвига по фазе выходного сигнала относительно входного от частоты w.

 

Амплитудно-фазовая характеристика АФХ отражает как свойство изменять амплитуду выходного сигнала, так и свойство задерживать сигнал на каждой частоте на определенную величину j.

 

Выражение для построения АФХ получают из передаточной функции W(p) заменой комплексной переменной р на jw.

Так как W(jw) комплексная функция, то её можно представить в алгебраической и показательной форме записи.

Алгебраическая форма записи:

Здесь U(w)-вещественная частотная характеристика (ВЧХ);

V(w)-мнимая частотная характеристика (МЧХ).

Найдем частотные характеристики соединения:

 

Комплексная частотная характеристика:

(5)

Найдем вещественную (ВЧХ) и мнимую (МЧХ) частотные характеристики, умножив числитель и знаменатель выражения (5) на комплексно-сопряженное знаменателя:

Отсюда

(6)

По выражению (6) строим амплитудно-фазовую характеристику (рис.2.в)

Найдем выражения для амплитудно-частотной (АЧХ) и фазо-частотной характеристик (ФЧХ) соединения как модуль и аргумент комплексной частотной передаточной функции соответственно.

Амплитудно-частотная характеристика имеет вид:

(7)

Фазо-частотная характеристика имеет вид:

(8)

По выражениям (7),(8) строим АЧХ и ФЧХ (рис.2 а,б):

а) АЧХ б)ФЧХ в) АФХ

 

Рисунок - 2

 

Из выражения (2) получим дифференциальное уравнение замкнутой системы:

 

 

 




<== предыдущая лекция | следующая лекция ==>
Расчет параметров настройки регулятора температуры воздуха после воздухоохладителей | x(t) y(t)

Дата добавления: 2015-08-12; просмотров: 474. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия