Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Анализ устойчивости САУ. Критерии устойчивости





Практическая пригодность систем регулирования определяется их устойчивостью и приемлемым качеством регулирования. Под устойчивостью понимают способность системы возвращаться в исходное состояние при прекращении возмущающего воздействия. Система может быть устойчива при воздействиях любой величины (устойчивость в большом) или при некоторых ограниченных воздействиях (устойчивость в малом).

Анализ системы на устойчивость основан на решении однородного дифференциального уравнения, описывающего свободное движение:

Условием устойчивости является:

Если корни характеристического уравнения вещественные и разные, то выходная величина будет монотонно изменяться, а характер изменения каждой составляющей будет определяться знаком соответствующего корня.

Если p i = 0, то i–я составляющая принимает постоянное во времени состояние. При p i > 0 соответствующая ему составляющая будет с течением времени увеличиваться до бесконечности. Следовательно, система будет устойчива только в том случае, если все корни характеристического уравнения меньше нуля.

Если корни характеристического уравнения сопряженные комплексные (p i = α i ± jω i), то составляющие переходного процесса будут иметь колебательный характер:

где А i и φ i – постоянные интегрирования.

В этом случае система будет устойчива, если все вещественные части корней (α i) будут отрицательными, а амплитуда колебаний будет стремиться со временем к нулю.

Корни характеристического уравнения легко определяются, если его степень не выше второй. Решение уравнений более высоких порядков связано с большими трудностями и выполняется с использованием численных методов. Поэтому были разработаны методы, позволяющие исследовать системы на устойчивость с помощью специальных критериев, не вычисляя при этом корней характеристического уравнения. Одним из таких критериев является алгебраический критерий Гурвица, который формулирует условие устойчивости в виде определителей.

Для этого из коэффициентов характеристического уравнения составляют определитель.

По главной диагонали выписывают последовательно все коэффициенты характеристического уравнения, начиная с а1. Затем заполняют столбцы коэффициентами: вверх от главной диагонали – по возрастанию индексов до а n, вниз – по убыванию до а 0. Оставшиеся пустыми места заполняют нулями. Затем из матрицы выделяют диагональные определители, удаляя последовательно равное количество строк и столбцов.

По алгебраическому критерию система n–порядка устойчива, если a1, а также все диагональные определители больше нуля.

Критерий Гурвица позволяет только установить факт устойчивости, и по полученным значениям невозможно определить, насколько близко к границе устойчивости находится система.

Критерий Найквиста (амплитудно-фазовый) был предложен для исследования устойчивости усилителей с обратной связью. Он позволяет судить об устойчивости замкнутой системы по поведению соответствующей ей разомкнутой системы, что упрощает расчеты.

Замкнутая система устойчива, если АФХ соответствующей ей разомкнутой системы W(jω) при изменении частоты от 0 до бесконечности не охватывает точки с координатами -1, i0.

Достоинством критерия Найквиста является возможность оценить, как близко к границе устойчивости находится система.








Дата добавления: 2015-08-12; просмотров: 638. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия