Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Показатели надежности восстанавливаемых систем





Показатели безотказности. В соответствии с двумя способами задания потока отказов для восстанавливаемых систем можно применять различные показатели безотказности.

При задании потока отказов как дискретного случайного процесса (t) – числа отказов в интервале (0,t) показателем безотказности является параметр потока отказов (t), определяемый соотношением (1.33). Для статического определения параметра потока отказов поставим на испытания N одинаковых восстанавливаемых систем в одинаковых условиях эксплуатации и при одинаковом техническом обслуживании. В момент t=0 все системы работоспособны и начинают работу. Будет пренебрегать продолжительностью восстановления. Обозначим ni(t) число отказов i-й системы (i = ) на интервале (0,t). Тогда

 

(t) = [ni (t + t) - ni(t)]/(N t).

Таким образом, параметр потока отказов – отношение числа отказов системы на некотором малом отрезке времени к значению этого отрезка.

При значении потока отказов как последовательности случайных величин 1, 2 … наработок между отказами [в предположении, что эти наработки имеют одинаковое распределение с плоскостью f(t)] показателем безотказности является средняя наработка на отказ

 

= М[ 1] = tf(t)dt (i = 1, 2…).

Отметим, что в простейшем потоке средняя наработка на отказ и параметр потока связаны соотношением = 1/ .

Для статического определения средней наработки на отказ будем, как и выше, испытывать N одинаковых восстанавливаемых систем. Предположим, что каждая из них проработала в течении времени t. Тогда

 

= Nt / ni (t). (1.39)

Показатели ремонтопригодности. Ранее предполагалось, что продолжительностью восстановления можно пренебречь по сравнению с временем между отказами. На практике продолжительность восстановления почти всегда существенно меньше времени между отказами, однако нельзя не учитывать продолжительность восстановления для решения многих задач надежности (например, расчета потерь из-за отказов, количества необходимого ремонтного персонала и др.).

Обозначим Тв случайную величину – продолжительность восстановление работоспособного состояние системы после отказа (далее сокращенно – время восстановления).

Будем полагать, что распределение величины Тв не зависит ни от времени, ни от порядкового номера восстановления, ни от длительности предыдущего восстановления, ни от предшествующей наработки между отказами. Функцию распределения величины Тв G(t), плотность распределения g(t). Если к тому же наработки между отказами 1, 2, 3… одинаково распределены и не зависят друг от друга и от величины Тв, то такой поток отказов с учетом времени восстановления носит название альтернирующего процесса восстановления. Отметим, что в этом процессе, как и в процессе восстановления, средняя наработка на отказ равна средней наработке до отказа .

График функционирования системы с учетом времени восстановления дан на рис. 1.11. Для упрощения принято, что единственной причиной отключения системы являются ее отказы – отключения по всем иным причинам не рассматриваются.

Показателем ремонтопригодности являются вероятность восстановления работоспособного состояния за заданное время t1 и среднее время восстановления соответственно

 

G(t1) =P{Tв < t1}; (1.40)

в =M[Tв ].

 

Статические определения этих показателей:

 

(t1)= l(t1)/m;

в = tвi /m, (1.41)

где l(t1) – число восстановлений, длительность которых меньше t1; m – общее число восстановлений; tвi – время восстановления после i-го отказа.

Показатели долговечности. Календарную продолжительность от начала эксплуатации системы до перехода в предельное состояние называют сроком службы системы. Срок службы системы может быть случайной величиной, которую обозначим Tc .Тогда в качестве показателя долговечности можно принять средний срок службы

 

с= M[Tc]

или гамма-процентный срок службы t , который определяется соотношением

P{Tc>t }= /100.

Таким образом t – календарная продолжительность от начала эксплуатации объекта, в течение которой он не достигнет предельного состояния с заданной вероятностью (выраженной в процентах).

Для некоторых систем показателем долговечности является установленный срок службы, который должна достигнуть каждая система. Этот показатель можно интерпретировать как t при =100 %.

В качестве случайной величины при рассмотрении долговечности может быть принят не только календарный срок службы системы, но и ее ресурс – наработка от начала эксплуатации до перехода в предельное состояние.

Комплексные показатели надежности. Кроме приведенных выше показателей, каждый их которых характеризует одну из составляющих надежности, используются также комплексные показатели, отражающие совместно безотказность и ремонтопригодность. К ним относятся: коэффициент готовности kr , коэффициент оперативной готовности ko.r(t) и коэффициент технического пользования kт.н.

Коэффициентом готовности kr называют вероятность того, что система окажется работоспособной в произвольно выбранный момент времени в установившемся в процессе эксплуатации. Можно показать (см., например, [1]), что в альтернирующем процессе восстановления коэффициента готовности

kr= / ( + в), (1.42)

т.е. этот коэффициент численно равен средней доле времени, в течение которого система пребывает в работоспособном состоянии.

Для статического определения, коэффициента готовности, как и в начале настоящего параграфа, поставим на испытания N одинаковых восстанавливаемых систем и обозначим Np(tx) число систем, находящихся в состоянии работоспособности в произвольный, достаточно удаленный от начала испытаний момент времени tx..Тогда статистическое определение коэффициента готовности

 

r = Np(tx) / N.

Коэффициентом оперативности готовности


Примеры расчета:

Стр. 68.







Дата добавления: 2015-08-12; просмотров: 734. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия