Галогенирование. Хлорирование перимидинов, сульфурилхлоридом в уксусной кислоте и N-хлорбензотриазолом (ХБТ) вапротонной среде
Хлорирование перимидинов, сульфурилхлоридом в уксусной кислоте и N-хлорбензотриазолом (ХБТ) в апротонной среде. Хлорирование перимидина действием моля SO2Сl2, приводит к образованию 6(7)- и 4(9)-хлорзамещенных в соотношении 8:1. При действии 2 молей SO2Сl2образуется сложная смесь моно-, ди-и трихлорперимидинов, а 3 молей SO2Сl2 - 4,6,7-трихлорперимидии с высоким выходом. Получить с помощью SO2Сl2 тетрахлорперимидин не удалось, но 2-метилперимидин хлорируется избытком SO2Сl2 дотетра-хлорпроизводного.
2.2 Синтез 7(6)ацетил перимидина исходя из 1, 8-Диаминонафталина 1, 8-Диаминонафталин (7,9 г, 0,05 моль) кипятят 1 ч с 15 мл муравьиной кислоты. Смесь разбавляют вдвое водой, кипятят 2—3 раза с активированным углем, фильтрат охлаждают и нейтрализуют 25%-ным раствором аммиака. Выпавший осадок отфильтровывают, хорошо промывают холодной водой и высушивают на воздухе, размазывая его тонким слоем на поверхности стеклянной пластинки. Ввиду мелкокристалличности перимидина даже хорошо отжатый на фильтре продукт содержит значительное количество воды. При высушивании в сушильном шкафу сырой продукт окисляется. Выход близок к количественному. Перимидин представляет собой желто-зеленые кристаллы с Тпл 224-225’С Заключение Известно, что пиримидин относится к так называемым π-амфотерным системам, т.е. обладает одновременно свойствами ярко π-избыточных и π-дефицитных соединений. Поэтому, пиримидин и его производные способны вступать как в реакции нуклеофильного, так и в реакции электрофильного замещения. C другой стороны, имеются данные о биологической активности различных производных перимидина. Некоторые производные являются депрессантами и эффективными стимуляторами центральной нервной системы. 2-Аминоперимидины обладают противомикробнойактивностью, а 2-ациламиноперимидины – фунгицидным действием. Таким образом, продолжение изучения реакционной способности пиримидина и синтез новых функциональных производных этого гетероцикла является весьма перспективным и полезным направлением. Практическая часть курсовой работы состояла в получении 7(6)ацетил пиримидина, являющемся ценным реагентом для органического синтеза. На первой стадии синтеза для получения чистого пиримидина важную роль играет предварительная перегонка 1-8нафталиндиамина, так как перимидин плохо поддается перекристаллизации. Был получен пиримидин, пригодный для дальнейшего использования. Выход составил 99% от теоретического. Вторая стадия - ацилирование по Фриделю-Крафтсу важно не допустить попадания в реакционную смесь даже следов воды, для этого применялась хлоркальциевая трубка. Выход ацетил пиримидина составил 60% или 0,756 г. потери связанны с частичной растворимостью соединения в воде.
Список литературы 1. Пожарский А. Ф., Анисимова В. А., Цупак Е. Б. Практические работы по химии гетероциклов // Изд-во РГУ. - 1988. - 158 с. 2. Дальниковская В. В., Комиссаров И. В., Пожарский А. Ф., Филиппов И. Т. Перимидины // Хим.-фарм. журнал, 1978, № 7, С. 85. 3. Успехи химии 1981 выпуск 9 с.1559-1594 4. Л. Пакетт Основы современной химии гетероциклических соединений Изд-во мир – 1968 с.97-134. 5. А.Е.Агрономов Ю.С. Шабаров Лабораторные работы в органическом практикуме М. Химия 1974. 6. В.И. Ивановский Химия гетероциклических соединений М Высшая школа 1978. 7. А.А. Потехина Свойства органических соединений Л. Химия 1984. 8. Дж. Джоуль К. Милс Химия гетероциклических соединений М Мир 2004. 9. И.И. Грандберг Органическая химия Дрофа 2002 А.Н.Несмеянов Н.А. Несмеянов Начала органической химии М 1969.
|