Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод градиентного спуска





Численные методы отыскания минимума состоят в построении последовательности векторов {x(k)}, удовлетворяющих условию f(x(0))> f(x(1))>…> f(x(k)). В этих методах элементы последовательности вычисляются по формуле x(k+1)=x(k)+hk* (k), где (k) – направление спуска, hk – длина шага в этом направлении.

Как известно, градиент функции в некоторой тоске направлен в сторону наискорейшего локального возрастания функции, следовательно, спускаться нужно в направлении, противоположному градиенту. Этот вектор называется антиградиентом.

Используя антиградиент в качестве направления спуска, приходим к итерационному процессу вида:

(1)

Все методы спуска, в которых вектор (k) совпадает с антиградиентом, называются градиентными методами.

Для минимизации функции используется метод градиентного спуска с дроблением шага. Процесс (1) с дроблением шага протекает следующим образом: выбираем некоторое значение x(0), затем выбираем hk=h=const и на каждом шаге процесса выбираем условие монотонности f(x(k+1))<f(x(k)). Если это условие нарушается, то h дробим до тех пор, пока монотонность не восстановится.

Для окончания счета можно использовать критерии:

Наиболее важным моментом в этом методе - это выбор шага. Формула (1) с постоянным шагом практически не применяется.







Дата добавления: 2015-08-12; просмотров: 527. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия