Теоретическая часть. Удельное электросопротивление является константой, характеризующей электрические свойства материала
Удельное электросопротивление является константой, характеризующей электрические свойства материала, является его ρ или обратная ему величина – электропроводность γ (γ=1/ρ). Электрическое сопротивление является величиной структурно чувствительной и зависит от природы материала, его состава и состояния. По современной теории проводимости в металлических материалах перенос электричества осуществляется электронами, находящимися на внешних электронных оболочках атома, так называемыми, свободными электронами. Эти электроны находятся в постоянном взаимодействии с атомными (ионными) потенциалами кристаллической решетки. Если металл поместить в электрическое поле напряженностью Е, то появится электрический ток, плотность которого пропорциональна Е: j=γE, (7.1) где коэффициент пропорциональности γ определяет электропроводность металла. Теоретически в абсолютно чистом металле с идеальной решеткой при температуре абсолютного нуля движение электронов под действием внешнего поля происходит беспрепятственно, т.е. электропроводность металла должна быть бесконечно большой (электросопротивление равно нулю). Однако в реальных условиях электроны постоянно испытывают сопротивление со стороны атомов кристаллической решетки, возникающее в результате тепловых колебаний атомов решетки, поэтому все металлы обладают конечным электрическим сопротивлением. Любые отклонения в строении решетки, влияющие на потенциал внутреннего поля, в котором движутся электроны¸ изменяет электрическое сопротивление. К таким факторам относится температура, магнитное состояние, дефекты строения решетки, дислокация, атомы примесей, образующие твердые растворы, дисперсные выделения и т.п. Сплавы представляют собой двойные или многокомпонентные системы. Их электропроводность изменяется в широких пределах в зависимости от структуры сплава. Подвергая сплав термической или механической обработке (закалке, отпуску, отжигу, деформации и т.д.) можно значительно изменить его структуру и тем самым изменить его проводимость. Это позволяет применить метод измерения для изучения внутреннего строения металлов и сплавов, для решения практических задач металловедения. Впервые метод измерения электросопротивления для изучения металлов и сплавов был применен в 1906 г. Н.С. Курнаковым, который установил зависимости изменения свойств сплавов от их фазового состояния. Электрическое сопротивление металлов и сплавов зависит от температуры. Как правило, электросопротивление тем больше, чем выше температура металла. Если обозначить через Rо и Rt сопротивление проводника при температурах 0°С и t °С, то зависимость от температуры можно выразить следующей формулой ) (7.2) При температурах выше 20°С для большинства металлов и сплавов справедлива линейная зависимость, так как коэффициенты β γ и т.д. относительно малы: (7.3) Из уравнения (7.3) можно получить выражение для температурного коэффициента электросопротивления (7.4) Это выражение дает средний коэффициент α в температурном интервале 0- t. При уменьшении этого интервала (в пределе) до нуля получается истинное значение температурного коэффициента при температуре t: . (7.5) Размерность α и αR – 1/°C. Температурный коэффициент электросопротивления является структурно-чувствительным свойством, изменяющимся в зависимости от изменения структуры и состава также, как и электропроводность. При этом существенно, что при определении температурного коэффициента αR можно не измерять линейные размеры образца и, таким образом, не будет внесена дополнительная погрешность, как при измерении удельного электросопротивления. В настоящее время применяют следующие методы измерения электросопротивления. В настоящей работе изучается электропроводность слоистых металлических и интерметиллидных материалов.
|