Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Преобразование Лапласа.





При исследовании и расчетах АС часто обращаются к математическому методу, который получил название преобразование Лапласа. Этот метод позволяет функцию х(t) одного переменного (обычно времени t) преобразовать в функцию х(р) другого переменного (как правило, р) посредством соотношения:

,

где р=а+jb – произвольная комплексная величина,

а и b – вещественные переменные,

х(t) – оригинал,

х(р) – изображение.

 

Сокращенно преобразование Лапласа записывается так:

х(р) = L[ х(t)]

Преобразование Лапласа дает возможность выполнить алгебраизацию дифференциальных уравнений, т.е. операции дифференцирования и интегрирования заменить алгебраическими операциями умножения и деления. При этом первая производная от х будет иметь изображение рх(р) и т.д., т.е. производная от х n -го порядка будет выражаться как произведение оператора р в n -ой степени на изображение х(р):

Интеграл заменяют дробью в числите которой изображение, а в знаменателе – оператор р:

Отношение изображения по Лапласу выходной величины к входной величине при нулевых начальных условиях называется передаточной функцией звена (элемента) автоматической системы управления.

Допустим уравнение звена, преобразованное по Лапласу при нулевых начальных условиях, имеет вид:

Хвых(р)(a0pn+a1pn-1+ …+an)=xвх(p)(b0pm+b1pm-1+ …+bm),

Откуда:

Величину:

,

называют передаточной функцией звена. K(p) и Q(p) – полиномы комплексного переменного р:

Понятие передаточной функции существенно упрощает решение инженерных задач при расчетах и наладке автоматических систем управления. Так, зная передаточную функцию системы, с учетом Хвых(р) по обратному преобразованию Лапласа, можно найти переходный процесс системы.

Переходная функция, или переходная характеристика, h(t) представляет собой переходный процесс на выходе звена или системы, возникающий при подаче на его вход скачкообразного воздействия при величине скачка, равной единице (при нулевых начальных значениях). Такое входное воздействие называется единичной ступенчатой функцией и обозначается x1(t)=1(t), что соответствует х1=0 при t£ 0 и х1=1 при t> 0. Предполагается, что единица имеет ту же размерность, что и физическая величина на входе звена или системы.

Если входное воздействие представляет собой не единичную ступенчатую функцию x1=N1(t), то выходная величина будет равна x2=Nh(t).

Таким образом, более строго переходную функцию можно определить как отношение выходной величины звена х2(t) к высоте ступенчатого скачка x1=N1(t) на его вход, т.е. h(t)=N-1x2(t) при этом размерность h(t) соответствует размерности передаточной функции звена.







Дата добавления: 2015-08-12; просмотров: 706. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия