Студопедия — Частотные характеристики автоматических систем.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Частотные характеристики автоматических систем.






На основе частотных характеристик разработаны инженерные частотные методы исследования САУ. Частотные характеристики позволяют просто выявлять влияние того или иного параметра на динамические свойства системы. Кроме того, частотные характеристики можно определить экспериментально.

Частотные характеристики описывают вынужденные колебания на выходе системы, вызванные гармоническим воздействием на входе. Эти характеристики строятся на основании их комплексных передаточных функции (КПФ). КПФ системы (звена) W(j ) представляет собой отношение изображении в виде комплексных чисел выходной и входной величин системы (звена) в установившемся режиме гармонических колебаний, т.е. W(j ) = , где и комплексы выходной и входной величин, определяется следующим образом. Если на вход системы подать синусоидальный сигнал x = Ax sin( t + φx), то после окончание переходного процесса на выходе звена также установятся синусоидальные колебания, но иной амплитуды и фазы y = Ay sin( t + φy).

Комплексные изображения входного и выходного сигнала имеют вид

= Ax e j(ωt + φ ); = Ay e j(ωt + φ )

Отсюда можно определить КПФ системы

W (j ) = . e j(φ - φ ) = A () · e (ω) (6.1)

где A () = – модуль КПФ, φ(ω) = φy – φx аргумент КПФ.

КПФ можно представить и в алгебраической форме

W (j ) = P() + jQ() (6.2)

где P() – вещественная часть КПФ, Q() – мнимая часть КПФ.

A () и φ(ω) через P() и Q() определяется следующим образом

A () = и φ(ω) = arctg (6.3)

КПФ на комплексной плоскости определяется вектором, длиной равной модулю КПФ, а поворот вектора определяется аргументом КПФ (рис 6.1) кривую, которую описывает конец вектора КПФ, при изменении частоты от нуля до бесконечности называет амплитудной фазовой частотной характеристикой (АФЧХ).

Рисунок 6.1 АФХЧ

Зависимость модуля КПФ от частоты амплитудной частотной характеристикой (АЧХ). Зависимость аргумента КПФ от частоты называет фаза – частотный характеристикой (ФЧХ). Зависимость модуля КПФ от частоты амплитудной частотной характеристикой (АЧХ). Физический смысл A () заключается в том, что она показывает на сколько раз увеличивается выходная амплитуда по сравнению с входным при разных частотах колебаний. φ(ω) характеризует сдвиг фаз между входными и выходными колебаниями при разных частотах.

Построение АФЧХ сложных систем сопровождается большой затратой времени, поскольку при построении АФЧХ системы необходимо перемножать АФЧХ отдельных ее элементов. Исследование системы упрощается, если пользоваться логарифмическим частотным характеристикам (ЛЧХ). В этом случае ЛЧХ системы получается сложением ЛЧХ отдельных ее элементов, т.е. операция умножения заменяется операциями сложения.

Если прологарифмировать КПФ, получим

 

ln W (j ) = ln A () + j φ(ω) (6.4)

 

Таким образом, ЛЧХ системы представляет собой совокупность двух характеристик ln A () и φ(ω).

Зависимость логарифма модуля ln A () КПФ от частоты, отложенной по оси абсцисс в логарифмическом масштабе, называется логарифмической амплитудной частотной характеристикой (ЛАЧХ).

Обычно на ось ординат принято откладывать не ln A (), а пропорциональную ему величину L () = 20 lg A (), где 20 lg A () = 20·0,434 ln A (). L () измеряется в децибелах. Децибел характеризует усиление или ослабление выходного сигнала в логарифмическом масштабе. Единица измерения частоты в логарифмическом масштабе является декада (дек). Если одна частота больше другой в 10 раз, то они отстают друг от друга на одну декаду.

Зависимость аргумента КПФ φ(ω) от частоты, отложенной по оси абсцисс в логарифмическом масштабе, называется логарифмической фазовой частотной характеристикой (ЛФЧХ). Примеры построения ЛАЧХ и ЛФЧХ показаны на рис 4.2.

Рисунок 6.2 ЛАЧХ и ЛФЧХ

 

Для удобства пользования логарифмическим масштабом на ось абсцисс обычно наносят значения самих частот, логарифмы которых отложены по этой оси.







Дата добавления: 2015-08-12; просмотров: 927. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия