САНКТ-ПЕТЕРБУРГ 1 страница
Кафедра транспорта и хранения нефти и газа
Вибрационная диагностика подшипников качения
Методические указания к лабораторной работе САНКТ-ПЕТЕРБУРГ
УДК 681.5.011:622 (075.84)
Вибрационная диагностика подшипников качения: Методические указания к лабораторной работе / Санкт-Петербургский горный ин-т. Сост.: Н.А.Баркова, Е.И.Крапивский, А.В.Шалыгин, В.В.Шорников. СПб, 2010. 38 с.
В методических указаниях излагаются основные методы контроля состояния и диагностики подшипников качения. Рассматриваются вопросы выбора алгоритмов вибрационной диагностики подшипников на этапах их входного контроля, выходного контроля машин после изготовления (ремонта), монтажа на месте эксплуатации и в процессе эксплуатации. Анализируются возможности оперативного контроля состояния подшипников и их детальной диагностики. Приводятся методики работы со средствами измерения и анализа подшипниковой вибрации. Рассматриваются особенности конфигурирования подшипников качения в программах мониторинга и диагностики. Излагаются методики проведения диагностических измерений и оценки состояния подшипников качения в режиме экспертной и автоматической диагностики. Практическая диагностика подшипников лабораторной установки дополняется анализом баз данных диагностических измерений на предприятиях различных отраслей промышленности, выполняющих диагностику технологического оборудования по вибрации. Указания предназначены для студентов СПГГИ, изучающих курсы «Основы технической диагностики», «Диагностика газонефтепроводов и газонефтехранилищ», «Техническая диагностика» и др. Они могут быть полезны студентам и аспирантам высших учебных заведений, изучающих методы и средства неразрушающего контроля, мониторинга состояния и диагностики машин и оборудования, а также специалистам различных отраслей
Табл.1. Ил.1. Библиогр.: 5 назв.
Научный редактор проф.А.А. Коршак
Ó Санкт-Петербургский горный институт им. Г.В.Плеханова, 2009 г.
ОГЛАВЛЕНИЕ 1.Цель работы……….…………………………………………………………………………………...3 2.Программа работы………………………………………………………………………………………4 3.Общие сведения……………………………………………………………………………………………4 3.1. Основные типы подшипников качения и методыконтроля их состояния…………………………4 3.2. Подшипниковая вибрация вращающегося оборудования………………………………………….6 3.3 Влияние дефектов на вибрацию подшипников и подшипниковых узлов ……………………….10 3.4. Оптимизация методов диагностики и диагностических параметров на разных этапах жизненного цикла подшипника…………………………………………………………………………...15 3.5. Возможности автоматической диагностики подшипников качения……………………………….23 4.Средства измерения и анализа, используемые в работе……………………………………………….32 5.Описание лабораторной установки……………………………………………………………………..36 6.Порядок проведения работы …………………………………………………………………………..37 7.Содержание отчета……………………………………………………………………………………...38 Литература………………………………………………………………………………………………..38 Приложение 1.Алгоритмы проведения работы с использованием переносного комплекса для вибрационной диагностики подшипников качения на базе программы DREAM ……………………….39 Приложение 2. Установка пороговых уровней ………………………………………………………….40
1. ЦЕЛЬ РАБОТЫ Изучение и анализ: - методов контроля состояния и диагностики подшипников - современных технических средств и программного обеспечения для вибрационной диагностики подшипников качения; - алгоритмов диагностирования подшипников качения в составе работающей машины на этапах выходного контроля, монтажа и эксплуатации. 2. ПРОГРАММА РАБОТЫ 1. Ознакомление с основными методами контроля состояния и 2. Обоснование выбора алгоритмов вибрационной диагностики подшипников на этапах выходного контроля машины после изготовления (ремонта), монтажа на месте эксплуатации и в процессе эксплуатации. 3. Изучение и работа со средствами измерения и анализа 4. Конфигурирование подшипников качения в программе мониторинга и диагностики. 5. Проведение диагностических измерений и оценка состояния 6. Работа с базами данных предприятий, выполняющих диагностику технологического оборудования по вибрации. 7. Составление отчета. 3. ОБЩИЕ СВЕДЕНИЯ 3.1. Основные типы подшипников качения и методы контроля их состояния Подшипники качения являются основным видом подшипников, используемых во вращающемся оборудовании. Они имеют преимущества по сравнению с подшипниками скольжения в низкооборотных машинах из-за более низких сил трения, а также в машинах небольшой мощности и стоимости (минимальные габариты и затраты на обслуживание). Подшипники качения делятся на группы по разным свойствам - по направлению действия нагрузки - радиальные, радиально-упорные, упорные; - по форме тел качения - шариковые, роликовые, игольчатые; - по числу рядов тел качения - однорядные, двухрядные, - по конструктивным характеристикам - самоустанавливающиеся и несамоустанавливающиеся, с цилиндрической и конус Условное обозначение подшипника, определяемое его характеристиками, содержит* Основную часть, а также может содержать дополнительную часть в виде цифровых и буквенных обозначений слева и справа от основной части; например: SKF29420E. По точности изготовления" Подшипники делятся на 6 классов, класс проставляется через тире слева от основного обозначения. Основная часть условного обозначения содержит четыре цифры, первая из которых определяет тип подшипника: 0 -шариковый радиальный однорядный, 1 - шариковый двухрядный сферический, 2 - роликовый однорядный с короткими роликами, 3 - роликовый двухрядный сферический, 4 - игольчатый, 5 - радиальный роликовой с витыми роликами, 6 - шариковый радиально-упорный, 7 - роликовый радиально-упорный конический, 8 -упорный и т.д. Следующая цифра указывает на серию подшипников, 1 - особо лёгкая серия диаметров № 1, 2 -легкая серия диаметров № 2, 3 - средняя серия диаметров № 3,4 - тяжелая серия диаметров № 4, 5 - легкая серия диаметров №5,6-средняя серия диаметров №6 и т.д. Следующие две цифры соответствуют одной, пятой (мм) посадочного размера внутреннего кольца, например, цифра 12 означает, что диаметр внутреннего кольца составляет 60 мм. Начиная с диаметра в 500 мм, вместо последних двух цифр через дефис ставится истинный диаметр подшипника в миллиметрах. Конструктивные особенности колец подшипника, а также защитных шайб определяются цифрами с левой стороны от основного обозначения. Следует отметить, что некоторые характеристики подшипников качения, необходимые для их глубокой диагностики, например, диаметр тел качения и их количество в подшипнике качения, вообще не нормируются и могут различаться у одинаковых подшипников, произведенных разными заводами или в разное время. Многие производители подшипников, однако, выпускают справочники со всеми данными, необходимыми для их диагностики, в том числе и по вибрации. Контроль состояния подшипников качения может осуществляться на всех этапах их жизненного цикла: при изготовлении, сборке и выходном контроле на подшипниковых заводах, при входном контроле, на этапе монтажа и выходном контроле оборудования на машиностроительных и ремонтных заводах, при монтаже и во время эксплуатации оборудования, а также, перед ремонтом и после ремонта на месте эксплуатации или на ремонтном предприятии. Контролироваться могут состав и свойства материала, геометрия элементов подшипника, состав и свойства смазки, величина и форма зазоров в подшипнике, его электрические свойства, температура, вибрация, воздушный шум и другие параметры. Оценка состояния подшипника в сборе и установленного в контролируемом оборудовании чаще всего производится по его вибрации, температуре и, в частности, подшипников с принудительной смазкой, по количеству продуктов износа в смазке. Вибрационные методы диагностики подшипников качения дают наибольшее количество информации, особенно в случаях, когда имеется возможность контроля вибрации при непосредственном контакте датчика с неподвижными элементами подшипника, поэтому часто в таких случаях единственным контролируемым процессом в подшипнике становится его вибрация. Важнейшей проблемой, вибрационной диагностики подшипников становится разделение составляющих вибрации, возбуждаемых контролируемым подшипником и другими элементами установки, в составе которой работает этот подшипник. 3.2. Подшипниковая вибрация вращающегося оборудования Подшипники качения являются источниками вибрации разной природы во всех частотных областях, начиная с инфранизкой и заканчивая ультразвуковой частотой. Основной вклад в низкочастотную вибрацию роторных машин с подшипниками качения обычно вносят составляющие вибрации на частотах, кратных частоте вращения ротора, которые чаще всего не определяются «и свойствами подшипников, ни их состоянием, а связаны с качеством центровки машин, балансировки роторов и техническим состоянием соединительных муфт. Но если анализировать спектр низкочастотной вибрации машины, то в нем обычно присутствует большое число менее сильных составляющих, определяемых качеством изготовления и монтажа подшипников, а также развитыми дефектами подшипников, возникающими вовремя эксплуатации машины. Низкочастотная подшипниковая вибрация машины в целом имеет кинематическую или параметрическую природу. Кинематическая вибрация возникает при движении инерционного тела по поверхности, с плавными неровностями. Так, если диаметр одного из тел качения больше, чем других, при прокатывании этим телом нижней точки неподвижного кольца подшипника, максимальной нагруженной силой тяжести ротора, ротор «подпрыгивает» с частотой вращения сепаратора: где частота вращения вала; - радиус сепаратора; - радиус тел качения; - угол контакта тел качения с дорожками качения. Такая же вибрация возникнет и в том случае, когда в одном месте изменено расстояние между телами качения, например, из-за большой степени износа одной перемычки сепаратора. Если есть неровность в нагруженной точке наружного (неподвижного) кольца подшипника, то в момент, когда в «ямку» попадает любое из тел качения, ротор «проваливается» с частотой прохождения тел качения через эту точку, которая называется частотой перекатывания тел качения по наружному кольцу: где Z - число тел качения. Если есть одна плавная неровность на внутреннем (вращающемся) кольце подшипника, то ротор будет «проваливаться» с частотой его вращения, однако вибрация этого происхождения, как правило, существенно меньше вибрации, возбуждаемой, например, остаточной неуравновешенностью ротора. Если же неровность имеет малую протяженность, в которую «проваливается» лишь одно тело качения, то возникнет вибрация ротора и машины в целом на частоте перекатывания тел качения по внутреннему кольцу: Если же неровность имеет место на теле качения, ротор будет «проваливаться» дважды за оборот тела качения, т.е. появится вибрация ротора на удвоенной частоте вращения тел качения: Подшипниковая вибрация параметрического происхождения возникает даже в бездефектных нагруженных подшипниках; из-за того что периодически меняется жесткость подшипника, так как ротор максимально нагружает лишь небольшую зону с телами качения, а число тел качения в этой зоне при вращении ротора меняется на одно с частотой перекатывания тел качения по наружному кольцу. Как следствие, ротор с этой частотой «проваливается», приближаясь к неподвижному кольцу подшипника. Перечисленные основные подшипниковые частоты определяют подшипниковую вибрацию не только на низких, но и на средних частотах, которые включают в себя прежде всего вибрацию не машины в целом, а подшипниковых узлов на гармониках этих частот с высокой кратностью. Среднечастотные периодические составляющие подшипниковой вибрации чаще всего имеют кинематическую природу, но возникают не при протяженных и плавных неровностях поверхностей качения, а при неровностях небольшого размера с резкими краями. При хорошем качестве смазки и малых радиальных нагрузках на подшипник смазка сглаживает края этих неровностей, что приводит к снижению среднечастотной вибрации подшипниковых узлов. В то же время в реальных машинах с нагруженными подшипниками среднечастотная подшипниковая вибрация может вырасти: - при ухудшении свойств смазки; - при дефектах сборки и монтажа машины, приводящих к - при совпадении чистоты хотя бы одной из подшипниковых Кроме гармонических составляющих подшипниковой вибрации на средних частотах присутствуют и случайные составляющие, определяемые гидродинамическими эффектами в смазочном слое подшипника. Это и гидродинамическое трение, и турбулентность смазочного слоя, и нелинейные эффекты, например, локальная кавитация. Спектральный максимум случайных пульсаций давления при идеальном масляном слое приходится на частоты, при которых длина волны в смазке сравнима с размером подшипника, однако существует зависимость этого максимума и от частоты вращения ротора. Кроме этого необходимо учитывать и частотную зависимость коэффициента преобразования пульсаций давления в вибрацию неподвижных элементов подшипникового узла. Как правило, максимум случайной вибрации, возбуждаемой гидродинамическими эффектами в подшипниках качения, в низкооборотных машинах приходится на 2-5 кГц, а в высокооборотных может доходить 10-25 кГц. При наличии высокодобротных резонансов в конструктивных элементах подшипников и машины случайные составляющие вибрации подшипниковых узлов по мощности могут быть существенно выше ее периодических составляющих. Вибрация гидродинамического происхождения вносит существенный вклад и в высокочастотную вибрацию подшипников качения. Но если при работе подшипника в какие-то моменты происходит разрыв масляной..пленки и тело качения ударяется о неподвижное кольцо подшипника, возникает случайная вибрация ударного происхождения, максимум энергии которой приходится на частоты в несколько раз выше, чем. у вибрации гидродинамического происхождения. При наличии неровностей на поверхностях качения часто возникает и ударное взаимодействие поверхностей качения без полного разрыва масляной пленки. В этом случае частотный максимум энергии вибрации находится где-то посередине. Как правило, под вибрацией подшипников, возбуждаемой упругими ударами при разрывах масляной пленки, понимается вибрация с энергетическим максимумом, приходящимся на частоты 30-60 кГц. Есть ультразвуковая вибрация трения еще одной природы, которая возникает при импульсном разрушении молекулярной структуры поверхностных слоев элементов трения. Эта импульсная вибрация возникает под нагрузкой при старении материалов в виде поверхностной волны на поверхности качения и носит название акустической эмиссии. Обычно под акустической эмиссией понимаются колебательные импульсы нелинейной природы, а на практике принято исследовать и использовать в диагностических целях эмиссию статически нагруженных материалов и эмиссию при утечках жидкости или газа в сосудах и трубопроводах под давлением. Что касается методов диагностики элементов трения на основе анализа акустической эмиссии трения, то практическая невозможность разделить в подшипниках ударные составляющие вибрации линейного происхождения с максимумом спектральной плотности на частотах до ста килогерц, и нелинейного происхождения с максимумом спектральной плотности выше 100 кГц, ограничивает их возможности. На практике применяется объединенный метод диагностики, в котором ультразвуковая вибрация не делится на составляющие линейной и нелинейной природы, получивший название SPM-метод (метод ударных импульсов).
3.3. Влияние дефектов на вибрацию подшипников и подшипниковых узлов Номенклатура дефектов, ограничивающих ресурс подшипников качения и представляющих собой потенциальную опасность Дефектыповерхностей качения по скорости развития обычно делятся на две группы: --износ Общий список дефектов подшипника качения, влияющих на его ресурс, можно разделить на группы следующим образом: 1) нарушения геометрии (плавные) поверхностей качения наружного, внутреннего кольца и тел качения (из-за неточности изготовления или износа); 2) разноразмерность тел качения; 3) нарушения геометрии сепаратора и защитных колец; 4) перекос наружного и внутреннего колец подшипника, перекос тел (тела) качения (в роликовом и игольчатом подшипниках); 5) перегрузка поверхностей качения без их перекосов; 6) проскальзывание колец в посадочном месте; 7) раковины и трещины на поверхностях качения; 8) дефекты смазки (недостаток, избыток, недопустимые избы Первая группа дефектов, в основном, влияет на низкочастотную вибрацию подшипникового узла и машины в целом. Обычно имеет место преимущественный рост вибрации на первых двух-трех гармониках частоты перекатывания тел качения по наружному кольцу (дефект наружного кольца), двух-четырех гармониках частоты вращения тел качения (дефект тел качения) и гораздо реже двух-трех гармониках частоты перекатывания тел качения по внутреннему кольцу (дефект внутреннего кольца). Последний дефект из первой группы из-за одновременного нагружения ротором нескольких тел качения чаще приводит к появлению колебательных сил на первых гармониках частоты вращения ротора. Однако эти силы трудно обнаружить, так как они много меньше сил той же частоты, действующих в машине из-за несоосностей валов и дефектов соединительных муфт. Как правило, в местах наибольшего отклонения формы поверхности качения от правильной (расчетной) поверхность качения имеет повышенную шероховатость, и при прокатывании по ней тел качения изменяется сила трения, а следовательно, появляется модуляция высокочастотной случайной вибрации подшипника теми же частотами, на которых растет низкочастотная вибрация при плавном изменении формы поверхностей, качения. Глубина модуляции сил трения (в процентах от среднего значения) зависит не только от- соотношения шероховатостей поверхностей качения в разных точках, но и от некоторых параметров смазочного слоя, например, толщины и вязкости. При анализе процессов модуляции высокочастотной вибрации новых подшипников необходимо помнить, что неприкатанные поверхности качения почти всегда имеют неравномерную шероховатость, т.е. обладают зависимостью коэффициента трения от угла их поворота. Это приводит практически к такой же модуляции высокочастотной вибрации, что и при износе поверхностей качения. Во вторую группу входит только один вид дефекта, возникающий либо при изготовлении подшипника, либо при ускоренном износе отдельных тел качения. Разноразмерность тел качения приводит к многократному увеличению удельных нагрузок на поверхности качения и резкому снижению ресурса подшипника. Дефект сопровождается ростом низкочастотной вибрации машины на частоте вращения сепаратора подшипника, иногда на ее второй и частично третьей гармониках, а также модуляции сил трения и высокочастотной случайной вибрации подшипника этими же частотами. Если статическая радиальная нагрузка ротора на подшипник изменяется на вращающуюся с частотой вращения вала, в частности в вертикальных машинах или при изломах линии вала в плоскости крепления полумуфт, то частоту вращения сепаратора следует заменить на разность частот вращения вала и сепаратора. К сожалению, при выходном контроле подшипников на заводах-изготовителях разноразмерность тел качения в подшипнике по вибрации не контролируется, так как всеми методиками контроля подшипников на стендах предусмотрено измерение -их вибрации на частотах выше второй гармоники частоты вращения внутреннего кольца. Как правило, разноразмерность тел качения не контролируется и в процессе эксплуатации машин, хотя ускоренный износ одного из тел качения сопровождается резким изменением шероховатости поверхности тела качения и быстрым износом стенки сепаратора. Как показывают статистические данные, при отсутствии перегрузок в подшипнике и нарушений свойств смазки износ тела качения приводит к наиболее быстрому старению и отказу подшипников качения. В третью группу сведены" дефекты поверхностей трения скольжения в подшипниках. Их непосредственное влияние на вибрацию подшипника сказывается лишь на высоких частотах, при задевании сепаратора за неподвижные элементы подшипника, а защитных колец - за вращающиеся элементы. Как правило, это задевание не носит строго периодического характера, поэтому изменяет только" две основных характеристики высокочастотной вибраций! её энергию (среднеквадратичное значение) и закон распределения мгновенных значений вибрации. Косвенное влияние этих дефектов на вибрацию подшипника может заключаться в изменении размеров стенок сепаратора (расстояние между отдельными телами качения); что влияет на вибрацию таким же образом, что и разноразмерность тел качения, а также в попадании продуктов износа в смазку и соответствующем изменении характеристик высокочастотной вибрации подшипника. В четвертую группу сведены основные дефекты монтажа подшипников В машине, объединенные общими правилами их обнаружения. Перекосы поверхностей качения опасны тем, что могут привести к многократному превышению нагрузок на подшипники с ускорением процессов старения и износа нагруженных участков поверхностей качения. Если через короткое время из-за изнбеа поверхностей перегрузка прекращается; то произошедшие изменения состояния могут привести к резкому ускорению развития многих дефектов. Как правило, перекосы лишь незначительно изменяют низкочастотную вибрацию машины, причем нередко в сторону ее уменьшения. Наибольшие изменения в сторону роста вибрации приходятся на средние частоты из-за наличия на любой поверхности качения незначительных неровностей, которые существенно увеличивают вибрацию подшипникового узла при уменьшении толщины смазочного слоя из-за роста нагрузки или ухудшении качества смазки. Общим правилом для идентификации перекосов является преимущественный рост четных гармоник подшипниковой вибрации. При этом рассматриваются гармоники высокой кратности, обычно выше десяти. Так, при перекосах наружного кольца это четные гармоники, кратные удвоенной частоте перекатывания тел качения по наружному кольцу, внутреннего -четные гармоники частоты вращения и достаточно часто частоты перекатывания тел качения по внутреннему кольцу, а приуперекот сах роликов -гармоники, кратные четвертой гармонике частоты вращения тел качения. Кроме роста подшипниковой вибрации на средних частотах, рост нагрузки на поверхности качения из-за снижения толщины масляного, слоя и имеющихся неровностей приводит к модуляции сил трения и случайной вибрации подшипниковыми частотами. Основным отличием такой модуляции является, с Одной стороны, возможное увеличение числа гармоник,в спектре огибающей вибрации, с другой стороны, преимущественный рост четных гармоник. При сильных перегрузках ловерхностей качения возможны импульсные разрывы смазочного слоя на неровностях поверхностей качения, в том числе периодические, и появление ультразвуковой вибрации импульсно ударного происхождения. В пятую группу входят дефекты, которые могут появиться как при монтаже, так и при эксплуатации оборудования (сопровождается многократными перегрузками поверхностей качения). При монтаже подшипников среди дефектов этой группы чаще других появляются радиальные статические перегрузки из-за несоответствия диаметров посадочных мест и подшипников, при монтаже машин - статические осевые перегрузки из-за осевых смещений машин друг относительно друга и радиальные статические или вращающиеся из-за несоосности соединяемых муфтами валов. Эта группа дефектов по своему проявлению в вибрации очень похожа на дефекты, рассмотренные в четвертой группе. Низкочастотная подшипниковая вибрация машины при таких дефектах может не только не расти, но и снижаться, а основные изменения связаны с ростом подшипниковых гармоник вибрации высокой кратности и модуляцией высокочастотной вибрации подшипниковыми частотами. Как правило, из-за конечной точности изготовления поверхностей качения осевые и радиальные статические перегрузки подшипников проявляются так же, как и перекос внутреннего кольца, и лишь в некоторых случаях преимущественная модуляция случайной вибрации имеет место на третьей гармонике, частоты, вращения вала. Вращающиеся нагрузки также являются причиной модуляции случайной вибрации несколькими гармониками частоты вращения вала, но основной является первая гармоника с последующим падением величины кратных гармоник. В шестую группу выделены дефекты в виде проскальзывания подшипников в посадочных местах. Как правило, проскальзывание начинается в импульсных режимах работы машины, в первую очередь при ее пусках, когда задача его обнаружения решается наиболее сложно. Изменения вибрации при проскальзывании заключаются прежде всего в нестабильности частот подшипниковых составляющих по отношению к частоте вращения ротора, задача измерения отношения Этих частот в режиме пуска - определённая техническая сложность. Если проскальзывание происходит и в стабильных режимах, то нестабильность подшипниковых частот обнаруживается по расширению подшипниковых составляющих вибрации по частотной координате. В момент проскальзывания наружного (неподвижного) кольца в посадочном месте происходит рост, в том числе и импульсный, сил трения и высокочастотной вибрации подшипника. Особенностью поведения внутреннего кольца подшипника с ослабленной посадкой является то, что при статической радиальной нагрузке на подшипник, например из-за силы тяжести ротора, один-два раза за оборот вала ось вала импульсно сдвигается во внутреннем кольце подшипника, создавая ударную нагрузку на подшипник и модулируя его высокочастотную случайную вибрацию.Необходимо учитывать, что такая же нагрузка может создаваться и при дефектах соединительных муфт, и при некоторых дефектах механических передач, например зубьев шестерен. Следующая, седьмая группа дефектов объединяете себе раковины, сколы и трещины на поверхностях качения. Выделить трещины в поверхностях качения в отдельную группу дефектов по их влиянию на вибрацию подшипниковых узлов или машины в целом практически невозможно, хотя в некоторых машинах удаётся по вибрационным признакам разделить трещины и раковины на внутренних кольцах и телах качения: Влияние дефектов этой группы на вибрацию заключается в появлении периодических ударов, которые и являются источником импульсной вибрации. Чем резче границы повреждения, тем короче удары и шире частотная область возбуждаемой вибрации. Если при ударе разрывается масляная пленка, упругие соударения поверхностей качения возбуждают и ультразвуковую вибрацию до частот, существенно Превышающих сто килогерц. Развитые дефекты незадолго до отказа подшипников могут стать источником сильной вибрации всей машины на гармониках подшипниковой вибрации низкой кратности. При дефектах наружного кольца удары идут с частотой перекатывания тел качения по наружному кольцу, при дефектах внутреннего кольца - с-частотой перекатывания тел качения по внутреннему кольцу, при дефектах тел качения - с двойной частотой вращения тел качения. Статическая нагрузка на подшипник приводит к модуляции силы удара о вращающиеся поверхности качения, в частности, при дефектах внутреннего кольца - частотой его вращения, при дефектах тел качения - частотой вращения сепаратора Вращающаяся нагрузка меняет частоты модуляции силы ударов, причем эти частоты могут сильно зависеть от особенностей нагрузки. Признаки периодической модуляции ударов - боковые составляющие у основных гармоник подшипниковых составляющих в спектрах вибрации и ее огибающей.
|