Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Показникова форма к.ч.





 

Нехай Якщо число записати в тригонометричній формі а потім застосувати формулу Ейлера (1.5), одержимо так звану показникову форму к.ч.

.

Така форма запису чисел дозволяє використовувати властивості експоненти і тому зручна для різних перетворень.

Множення, ділення і піднесення до степеня к.ч.: якщо

то

;

( ціле).

Приклад 1. Записати у показниковій формі к.ч. .

Розв’язання. Користуємось алгоритмом, який вже викладений у §1.15.

1. Будуємо к.ч. на площині ХОУ і визначаємо чверть, якій воно належить.

З рис. видно, що ІІІ чв.

2. Обчислюємо модуль к.ч.

3. Знаходимо

4. Оскільки ІІІ чв., то за формулою (1.1) §1.14 маємо:

5. За формулою запишемо

.

Перевірка.

Відповідь.

Приклад 2. Використовуючи показникову форму чисел обчислити наближено (всі обчислення виконувати з чотирма знаками після коми). Для контролю знайти точне значення , виконуючи обчислення в алгебраїчній формі.

Розв’язання. Знаходимо квадрати модулів і аргументи (в градусах) даних чисел:

Виконуючи дії над числами в показниковій формі, отримаємо

До алгебраїчної форми запису числа переходимо за допомогою формули Ейлера (1.5):

Контроль. Виконаємо дії в алгебраїчній формі:

Приклади для самостійного розв’язання

Перетворити у показникову форму комплексні числа, виконати перевірку:

1. . 2. . 3. . 4. .

Відповіді.

1. . 2. .

3. . 4. .

 

 







Дата добавления: 2015-08-12; просмотров: 481. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия