Экспоненциальный (J-образный)рост численности
Второй принцип популяционной экологии (простое наблюдение, эмпирический опыт): Рост любой популяции не может продолжаться вечно - всегда есть верхний предел, выше которого популяционная плотность не увеличивается S –образный (логистический – один из его видов) рост популяций может наблюдаться при самых разных механизмах ограничения плотности: Рост похожий на экспоненциальный возникает только после какого-то внешнего нарушения и затем он неизбежно переходит в S-образныйВ основе логистической модели – предположение, что удельная скорость популяционного роста снижается линейно при увеличении плотности популяции
Биотический потенциал -репродуктивный потенциал, важнейший условный показатель, отражающий способность популяции к размножению, выживанию и развитию при оптимальных экология, условиях, т. е. к увеличению численности при отсутствии лимитирующих факторов.
16 .Основное уравнение динамики численности и принципы популяционной экологии. S-образный (логистический) рост популяции у животных. Емкость среды. Ограничители роста популяции. N = I – E + B – D Основное уравнение: Численность = рождаемость – смертность + (иммиграция –эмиграция)
Динамика численности популяций. То, как по мере старения снижается численность особей одного возраста в популяции, показывает кривая выживания. Известны три основных типа кривых выживания. Кривая I соответствует популяции, большинство членов которой доживает до возраста, близкого к максимально возможному для данного вида (крупные млекопитающие).Кривая II отражает равную вероятность гибели особей в любом возрасте (птицы и пресмыкающие). Кривая III соответствует очень высокой смертности в раннем возрасте; для особей, переживших этот период, вероятность смерти низка (многие растения, беспозвоночные, рыбы). В популяциях большинства видов животных и растений численность более или менее постоянна, но у некоторых видов она подвержена значительным колебаниям, иногда весьма регулярным, например, у полевок, леммингов, рыб, некоторых насекомых. Скорость роста популяции определяется биологическим потенциалом, т.е. индивидуальными особенностями вида. Любая популяция теоретически способна к неограниченному росту численности, если ее не лимитируют факторы среды. Динамика численности популяции во времени определяется соотношением показателей рождаемости и смертности особей, а также их иммиграцией и эмиграцией. Факторы, действующие на численность популяции, экологи делят на две группы: первичные (ультимативные) и вторичные (сигнальные). К первичным факторам среды относятся: пища, конкуренты, паразиты, хищники, загрязнение и небиологические – температура, солевой состав (для гидробионтов), газовый состав атмосферы, осадки, климат. Действие ультимативных факторов прямое и неизбежное. Вторичные факторы косвенно указывают виду на избыточность его численности.
Статические и динамические показатели популяции. При описании структур и функционирования популяции используют две группы показателей. Если мы даем характеристику состояния популяции на конкретное данное время t, то мы используем статические показатели – количество особей в популяции, площадь ареала (пространства, где обитает данная популяция), плотность особей (средняя и в разных частях ареала), характер пространственного распределения особей, численность разных возрастных групп, численность особей разных полов, численность особей по разным размерам, численность здоровых и больных особей. С другой стороны, эколога всегда интересуют изменения, которые происходят в популяции не только в пространстве, но и во времени. Именно такие наблюдения лежат в основе моделирования характера и степени устойчивости экосистем, зависимости поведения экосистем в условиях экологических кризисов, в том числе и антропогенных. Экологу очень важно знать, какие изменения произошли с популяцией за время от первого до второго наблюдения t1-t0 = Dt. Иными словами, эколог должен определить, с какой интенсивностью происходят все возможно наблюдаемые изменения в популяции. Следовательно, динамические (временные) характеристики популяций связаны с понятием скорости, т.е., с какой скоростью происходят все изменения в популяции. К динамическим характеристикам относятся рождаемость, смертность, мгновенная скорость роста популяции, продолжительность жизни и кривые выживания. Динамические характеристики всегда строятся по конкретным изменениям, которые произошли в статических структурах. Поэтому классификация популяций по статическим структурам чрезвычайно важна. Основными статическими показателями структуры популяций являются численность и распределение организмов в пространстве, а также соотношение разнокачественных особей. В популяции выделяют половые и возрастные группы и соответственно различают половую и возрастную структуру популяций. Обе эти характеристики иногда объединяют, говоря обобщенно о демографической структуре популяции. Кроме того, популяцию характеризует пространственная и этологическая (т.е. связанная с поведением) структура. Знание структуры популяции позволяет оценивать не только состояние популяции в данный момент, но и представить направление ее дальнейшего развития. Исходя из вышесказанного, популяции можно также классифицировать по их пространственной и возрастной структуре, по постоянству приуроченности или смене сред обитания и другим экологическим критериям. Уравнение.Изменение численности, вообще говоря, определяется соотношением четырех величин – рождаемости, смертности, иммиграции и эмиграции. Обозначим изменение численности за некое время Δt как ΔN, рождаемость как B, смертность как D, иммиграцию как I и эмиграцию как E. Тогда можно написать взаимосвязь этих величин как формулу: Естественно, экспоненциальный рост популяции не может быть вечным. Рано или поздно ресурс исчерпается, и рост популяции затормозится. Каким будет это торможение? Практическая экология знает самые разные варианты: и резкий взлет численности с последующим вымиранием популяции, исчерпавшей свои ресурсы, и постепенное торможение прироста по мере приближения к определенному уровню. Проще всего описать медленное торможение. Простейшая описывающая такую динамику модель называется логистической и предложена (для описания роста численности популяции человека) французским математиком Ферхюльстом еще в 1845 году. В 1925 году аналогичная закономерность была заново открыта американским экологом Р. Пирлем, который предположил, что она носит всеобщий характер.В логистической модели вводится переменная K — емкость среды, равновесная численность популяции, при которой она потребляет все имеющиеся ресурсы. Прирост в логистической модели описывается уравнением dN/dt=r×N×(K-N)/K (рис. 4.4.2). Рис. 4.4.2. Логистический рост Пока N невелико, на прирост популяции основное влияние оказывает сомножитель r×N и рост популяции ускоряется. Когда становится достаточно высоким, на численность популяции начинает оказывать основное влияние сомножитель (K-N)/K и рост популяции начинает замедляться. Когда N=K, (K-N)/K=0 и рост численности популяции прекращается. При всей своей простоте логистическое уравнение удовлетворительно описывает много наблюдаемых в природе случаев и до сих пор с успехом используется в математической экологии.
|