Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сравнение нескольких средних методом дисперсионного анализа





Вернемся к задаче: прове­рить при заданном уровне значимости нулевую гипотезу о равенстве нескольких (p > 2) средних нормальных со­вокупностей с неизвестными, но одинаковыми дисперсиями. Покажем, что решение этой задачи сводится к срав­нению факторной и остаточной дисперсий по критерию Фишера — Снедекора.

1. Пусть нулевая гипотеза о равенстве нескольких средних (далее будем называть их групповыми) пра­вильна. В этом случае факторная и остаточная дисперсии являются несмещенными оценками неизвестной генераль­ной дисперсии и, следовательно, различаются незначимо. Если сравнить эти оценки по критерию F, то очевидно, критерий укажет, что нулевую гипотезу о равенстве факторной и остаточной дисперсий следует принять.

Таким образом, если гипотеза о равенстве групповых средних правильна, то верна и гипотеза о равенстве фак­торной и остаточной дисперсий.

2. Пусть нулевая гипотеза о равенстве групповых средних ложна. В этом случае с возрастанием расхожде­ния между групповыми средними увеличивается фактор­ная дисперсия, а вместе с ней и отношение . В итоге окажется больше и, следовательно, гипотеза о равенстве дисперсий будет отвергнута.

Таким образом, если гипотеза о равенстве групповых средних ложна, то ложна и гипотеза о равенстве фак­торной и остаточной дисперсий.

Легко доказать от противного справедливость обрат­ных утверждений: из правильности (ложности) гипотезы о равенстве фак­торной и остаточной дисперсий следует правильность (ложность) гипотезы о равенстве групповых средних.

Итак, для того чтобы проверить нулевую гипотезу о равенстве групповых средних нормальных совокупностей с одинаковыми дисперсиями, достаточно проверить по критерию F нулевую гипотезу о равенстве факторной и остаточной дисперсий. В этом и состоит метод диспер­сионного анализа.

Замечание 1. Если факторная дисперсия окажется меньше остаточной, то уже отсюда следует справедливость гипотезы о равен­стве групповых средних и, значит, нет надобности прибегать к кри­терию F.

Замечание 2. Если нет уверенности в справедливости пред­положения о равенстве дисперсий рассматриваемых p совокупностей, то это предположение следует проверить предварительно, например, по критерию Кочрена.

Пример. Произведено по 4 испытания на каждом из трех уров­ней. Результаты испытаний приведены в таблице 3. Методом диспер­сионного анализа при уровне значимости 0,05 проверить нулевую гипотезу о равенстве групповых средних. Предполагается, что выборки извлечены из нормальных совокупностей с одинаковыми дисперсиями.

Таблица3

Номер испытания Уровни фактора
i
       
       
       
       
     

 

Решение. Для упрощения расчета вычтем C = = 52 из каждого наблюдаемого значения: . Составим расчетную табл. 4.

Таблица 4

Номер испытания i Уровни фактора Итоговый столбец
  -1       -10    
          -8    
          -2    
               
            =266
        -20  
           

 

Пользуясь таблицей и учитывая, что число уровней фактора p = 3, число испытаний на каждом уровне q = 4, найдем общую и факторную суммы квадратов отклонений

= 266 – 0 = 266,

= (608/4) – 0 = 152

Найдем остаточную сумму квадратов отклонений: = 266 - 152 = 114.

Найдем факторную и остаточную дисперсии:

1 52/(З- 1) = 76, .

Сравним факторную и остаточную дисперсии по критерию F), для чего найдем наблюдаемое значение критерия:

= 76/12,67 = 6.

Учитывая, что число степеней свободы числителя = p-1=3-1= 2, а зна­менателя = p(q-1)=9 и уровень значимости = 0,05, по таблице находим критическую точку:

= 4,26.

Так как (6 > 4,26) — нулевую гипотезу о равенстве групповых средних отвергаем. Другими словами, групповые средние «в целом» различаются значимо. Если требуется сравнить средние попарно, то следует воспользоваться критерием Стьюдента.







Дата добавления: 2015-08-12; просмотров: 1527. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия