Распределение энергии по степеням свободы.
В общем случае внутренняя энергия представляет собой сумму всех видов энергии, которыми обладают частицы тела. В идеальном газе молекулярное взаимодействие отсутствует, и поэтому его внутренняя энергия равна суммарной кинетической энергии молекул. Полученное нами выражение для средней кинетической энергии молекулы - две степени свободы поступательного движения;
- три степени свободы вращательного движения. Соответственно, положение шара на столе можно задать пятью координатами - x, y и α, β, γ. Таким образом, число степеней свободы любого тела или системы тел равно количеству независимых величин (координат), с помощью которых может быть задано положение системы. Хаотичность молекулярного движения требует, чтобы на любую из трех степеней свободы приходилось одно и то же количество кинетической энергии, т.е.
Исходя из молекулярной теории газов, Максвелл и Больцман пришли к принципу равномерного распределения кинетической энергии молекул по всем степеням свободы. Это значит, что на одну степень свободы поступательного, вращательного или колебательного движения приходится одна и та же величина энергии
I = mr2 ≈ 0.
Для двухатомных молекул одну из осей вращения всегда можно совместить с осью молекулы (см. рис.). Вращение вокруг этой оси равносильно вращению отдельных атомов, т.е. его энергия равна нулю. Поэтому двухатомной молекуле с жесткой связью между атомами следует приписать пять степеней свободы: три поступательного и две вращательного. Для молекул с числом атомов три и более, которые связаны между собой жестко, число степеней свободы равно шести. Если связь между атомами в молекуле имеет упругий характер, то появляются колебательные степени свободы. Однако учет энергии, связанной с колебательными степенями свободы, как оказалось, довольно сложен, т.к. энергия, которая приходится на одну степень свободы колебательного движения зависит от температуры и частоты колебаний атомов
Опыт показывает, что при небольших температурах энергией колебательного движения можно пренебречь. И мы ее в дальнейшем учитывать не будем. Если обозначить теперь число степеней свободы через j, то кинетическая энергия одной молекулы
Для произвольной массы газа ∆m:
Эксперимент при низких температурах подтверждает выводы.
|