Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Связь коэффициентов массопередачи и массоотдачи





 

Чтобы установить аналитическую зависимость между коэффициентами массопередачи и массоотдачи, принимают, что на границе раздела фаз достигается равновесие. Это предположение равносильно допущению о том, что сопротивлением переносу вещества через границу раздела фаз можно пренебречь. Отсюда как следствие вытекает положение об аддитивности фазовых сопротивлений, которое является одной из предпосылок к расчету коэффициента массопередачи.

Допустим, что распределяемый компонент переходит из фазы G в фазу L и движущая сила выражается в концентрациях фазы G. При установившемся процессе массопередачи количество вещества, переходящее из одной фазы в другую фазу, определяется по уравнению

 

.

 

Для упрощения рассмотрим случай, когда равновесная зависимость между равновесными концентрациями представляет линейную зависимость , где m – тангенс угла наклона линии равновесия.

Из уравнения равновесия следует

 

и .

 

Уравнение массоотдачи для жидкой фазы

 

.

 

Подставляя значения и в уравнение массоотдачи, получим

 

,

 

откуда

. (1.23)

 

Из уравнения массоотдачи для газовой фазы

 

 

получим

. (1.24)

 

Складывая выражения (1.23) и (1.24) и исключая неизвестную концентрацию на границе раздела фаз, получим

 

.

 

Из уравнения массопередачи следует, что

 

.

 

Приравнивая правые части и сокращая подобные члены, получим выражение для коэффициента массопередачи по газовой фазе:

 

. (1.25)

 

При выражении коэффициента массопередачи в концентрациях жидкой фазы получим

 

. (1.26)

 

Левые части уравнений представляют собой общее сопротивление переносу вещества из фазы в фазу, т. е. сопротивление массопередаче, а правые части – сумму сопротивлений массоотдаче в фазах. Поэтому эти зависимости являются уравнениями аддитивности фазовых сопротивлений. Эти уравнения справедливы и для случая, если линия равновесия является кривой.

 







Дата добавления: 2015-09-04; просмотров: 596. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия