Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Движущая сила массообменных процессов





 

Движущей силой массообменных процессов является разность между рабочей и равновесной концентрациями или наоборот. Это зависит от того, которая из указанных концентраций больше.

На рис. 1.4 приведены возможные варианты выражения движущей силы массообменного процесса при одном и том же направлении перехода распределяемого вещества.

При этом движущую силу можно выражать либо через концентрации распределяемого вещества в фазе G, либо L. В этой связи уравнения массопередачи, записанные по фазам, имеют вид

 

,

 

. (1.7)

 

Индексы у коэффициента скорости процесса показывают, какие концентрации приняты для выражения движущей силы. В общем случае и , но всегда выполняется равенство

. (1.8)

 

На рис. 1.4. показано, как движущая сила меняется с изменением рабочих концентраций. В этой связи для всего процесса массообмена, протекающего в пределах изменения концентраций от начальных до конечных, должна быть определена средняя движущая сила по газовой фазе или жидкой – .

 

 

а) б)

Рис. 1.4. Движущая сила массообменного процесса для участка аппарата:

а) по газовой фазе; б) по жидкой фазе

 

С учетом средней движущей силы процесса основное уравнение массопередачи для всей поверхности контакта фаз может быть записано в виде

, (1.9)

. (1.10)

При определении движущей силы возможны два случая:

– зависимость между равновесными концентрациями не линейна и определяется функциональной зависимостью самого общего вида типа ;

– зависимость между равновесными концентрациями линейная –
( – представляет собой постоянную величину).

Определим среднюю движущую силу по фазе G для случая перехода распределяемого компонента из газовой в жидкую фазу. Для элемента поверхности имеем

; .

 

Из сопоставления предыдущих равенств получим

 

 

для элементарной поверхности фазового контакта имеем

 

.

 

После интегрирования в пределах 0F и получим

 

. (1.11)

Изменим границы интегрирования с целью исключения отрицательного знака перед интегралом и вставим равенство для :

 

. (1.12)

При выражении движущей силы для жидкой фазы получим аналогичное выражение:

. (1.13)

При сравнении уравнений (1.9) и (1.10) с уравнениями (1.12) и (1.13) составим выражения для средних движущих сил по газовой и жидкой фазам:

, (1.14)

 

. (1.15)

 

Интегралы, стоящие в правой части равенств (1.14) и (1.15), называют числами единиц переноса – сокращенно ЧЕП.

Отсюда выражение для ЧЕП в газовой фазе имеет

,

а выражение для ЧЕП в жидкой фазе:

.

Число единиц переноса, как следует из уравнений (1.14) и (1.15), можно определять по средней движущей силе процесса:

,

.

Физический смысл ЧЕП состоит в том, что эта величина характеризует изменение рабочей концентрации фазы, приходящееся на единицу движущей силы.

Эти соотношения справедливы для всех случаев, когда между рабочими и равновесными концентрациями имеют место линейные и нелинейные зависимости.

Числа единиц переноса выражаются интегралами, которые не могут быть решены аналитически, так как вид функции или в каждом конкретном случае различен. В связи с этим число единиц переноса и определяют методом графического или численного интегрирования.

При графическом интегрировании (рис. 1.5) задаются рядом значений , промежуточных между величинами и .

 
 

Рис. 1.5. К расчету числа единиц переноса методом графического
интегрирования

 

Строят кривую зависимости от . Измеряют площадь, ограниченную крайними ординатами, соответствующими и , и осью абсцисс (площадь , заштрихованная на рисунке). После этого находят величину искомого интеграла с учетом масштабов и осей ординат и абсцисс:

.

Аналогично, пользуясь графиком зависимости от , определяют величину .

Для случаев, когда между равновесными концентрациями существует прямолинейная зависимость, при определении средней движущей силы используются более простые зависимости, вывод которых приведен в учебной литературе. Например, при расположении рабочей линии процесса выше линии равновесной для газовой и жидкой фаз зависимости для расчета средней движущей силы имеют вид

 

;

 

 

а для вычисления ЧЕП:

 

;

 

,

 

где и – тангенсы угла наклона рабочих и равновесных линий изменения концентраций.

 

 







Дата добавления: 2015-09-04; просмотров: 787. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия