Студопедия — Системы аэрации
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Системы аэрации






2.6. Аэраторы должны обеспечивать заданный кислородный режим и необходимую интенсивность перемешивания в аэротенках.

2.7. Пневматические аэраторы рассчитываются по зависимостям, приведенным в п. 6.157 СНиП 2.04.03-85. В конструкции мелкопузырчатых аэраторов могут применяться фильтросные пластины и трубы, синтетические ткани, пористые пластины и т.п.

При использовании пористых материалов удельный расход воздуха на единицу рабочей поверхности аэраторов Ja,d зависит от индивидуальных свойств этих материалов и назначается в пределах Ja,d = 30-100 м3/(м2. ч); для фильтросных пластин - Ja,d = 60-80 м3/(м2. ч), для фильтросных труб Ja,d = 70 - 100 м3/(м2. ч), считая на площадь горизонтальной проекции трубы, для синтетических тканей (арт. 56007, арт. 56026) Ja,d = 50 - 80 м3/(м2. ч). Потери напора в фильтросных материалах и тканях следует принимать 0,7-1 м. Скорость выхода воздуха из отверстий дырчатых труб - 50 м/с.

При использовании аэраторов из синтетических тканей или пористых пластмасс целесообразны конструкции в виде решеток шириной до 2 м, что позволяет увеличить площадь полосы аэрации (отношение faz/fat = 0,2-0,3), повысить эффективность использования и снизить удельный расход воздуха.

2.8. В аэротенках-смесителях пневматические аэраторы располагаются вдоль одной стены коридора равномерно по всей их длине. Количество фильтросных пластин или труб определяется с учетом необходимости интенсивности аэрации и рекомендуемых значений Ja,d. В регенераторах аэраторы размещаются неравномерно по длине: в первой половине в 2 раза больше, чем во второй.

2.9. В аэротенках-вытеснителях аэраторы располагаются неравномерно в соответствии со снижением концентрации загрязнений и скоростей биохимического окисления.

Пример расчета.

Исходные данные: вид сточных вод (например, городские); расход сточных вод qW = 4200 м3/ч; солесодержание воды Сs = 3 г/л; БПКполн исходной и очищенной воды Len и Lвх - 150 в 15 мг/л, расчетная температура воды ТW 20 °С.

Удельный расход воздуха qаir, осуществляется по формуле (61) СНиП 2.04.03-85 для условий полной биологической очистки. В рассматриваемом примере удельный расход кислорода q0 = 1,1 и средняя концентрация кислорода в аэротенке С0 = 2мг/л.

По данным расчета объем аэротенка Watv = 16162 м3. Приняв по конструктивным соображениям длину коридора l = 60 м и рабочую глубину Hat = 4 м, общая ширина аэротенка будет равна:

.

Приняв ширину одного коридора b = 6 м, число коридоров будет равно:

n k = B at/ b = = 11,17.

Следует принять n k = 12 и соответственно изменить и длину коридора l

Bat = n k b = 12 . 6 = 72 м; l = Watv/Hat Bat = =56 м.

В зависимости от температуры воды,ее солесодержания и глубины погружения аэратора растворимость кислорода определяется зависимостью

, (38)

где ha = hai- hay; при h = 0,3м; h а = 4-0,3 = 3,7 м; TW = 20 °С; Cs = 3 г/л;

= 8,72 мг/л.

Приняв в первом приближении faz/fat = 0,1; по табл. 42 СНиП 2.04.03-85 К1 = 1,47 для аэратора из фильтросных труб при ha = 4м, по табл.43 СНиП 2.04.03-85 К2 = 2,52. При 20 °С коэффициент КT = 1.

Для городских сточных вод коэффициент K 3 = 0,85. Приведем значения коэффициентов K 3 для некоторых видов производственных сточных вод

Источники сточных вод K 3
Целлюлозно-бумажные комбинаты ………… 0,7-0,8
Молочные заводы ……………………………. 0,8
Производства крафт-бумаги …………………. 0,7
Деревообрабатывающие  
производства …………………………………. 0,68
Бумажные фабрики …………………………… 0,85
Картонажные фабрики ……………………….. 0,53-0,64
Фармацевтические заводы …………………… 0,8-1,6
Заводы синтетического волокна ……………. 1-1,8

Для определения интенсивности аэрации по длине аэротенка-вытеснителя строится график изменения БПКполн во времени (рис. 13). Периоды аэрации для заданных промежуточных значений Lex определяются расчетом по формуле (50) СНиП 2.04.03-85. Данные расчетов для условий рассматриваемого примера приведены в табл. 8.

Рис. 13. Зависимость Lex от продолжительности пребывания в аэротенках-вытеснителях

Таблица 8

Lmix мг/л          
Lex, мг/л          
taiv. ч 0,44 1,06 1,73 2,53 2,96

На графике (см. рис. 13) интервал времени, соответствующий продолжительности аэрации, при которой достигается Lex = 15 мг/л, делится на равные части (по принятому числу ячеек аэротенка-вытеснителя), например на 6 частей. Для периодов аэрации в каждой ячейке с помощью полученной кривой (см. рис. 13) определяются значения БПКполн на входе и выходе из ячеек. Эти данные приведены в табл. 9.

Таблица 9

Показатель Номер ячейки Примечания
I II III IV V VI
Lеn, мг/л             По рис. 13
Lex, мг/л   75и         то же
qо, мг/мг Lеn- Lеx 0,9 0,9 0,9 0,9 1,0 1,1 -
q air, ì33 1,02 0,85 0,81 0,68 0,71 0,47 -
Ja3/(м2ч) 6,38 5,32 5,06 4,25 4,43 2,95 -
Q ¢air, ì3             -
n d, ед. 1,82/2 1,52/2 1,44/2 1,21/1 1,27/1 0,84/1 -

Примечание. Под чертой указано принятое числорядовфильтросных труб.

На основе данных табл. 9 по формуле (39) определяется интенсивность аэрации в каждой ячейке

, (39)

где air - удельный расход воздуха для каждой ячейки определяется по формуле (61) СНиП 2.04.03-85.

Для рассматриваемого примера количествоячеек принято nja = 6, общая продолжительность аэрации в сооружении по табл. 8 taiv = 2,96 ч.

Количество рядов пневматических аэраторов (например, фильтросных труб) определяется по формуле

(40)

В рассматриваемом примере ширина коридора аэротенки принята b = 6 м, удельный расход воздуха на аэратор для фильтросных труб Jad = 70 м3/(м2ч), площадь одного ряда аэратора на 1 м фильтросных труб dy, = 300 мм; d = 0,3 м2/м. Расход воздуха air, м3/ч, в каждой ячейке определяется по формуле

. (41)

Общий расход воздуха на аэротенк Qair, равенсумме всех air .

Для более точного регулирования подачи воздуха на воздуховодах каждой ячейки следует установить расходомеры с задвижками или вентилями.

2.10. В аэротенках-вытеснителях с регенераторами удельный расход воздуха определяется по формуле (61) СНиП 2.04.03-85. Количество аэраторов на первой половине длины аэротенков и регенераторов принимается вдвое больше, чем на остальной длине коридора.

Для условий рассмотренного примера в п. 2.9 удельный расход воздуха, рассчитанный по формуле (61) СНиП 2.04.03-85, составил

qair = 12,22 м33.

Общий расход воздуха Qair = 12,22 . 4200 = 51309 м3/ч.

Средняя интенсивность аэрации

Ja = (12,22 . 4)/3,75 = 13,03 м3/(м2ч).

Интенсивность аэрации на первой половине аэротенка и регенератора Ja1 = 1,33 Ja, на второй - Ja 2 = 1,33 Ja/ 2 = 0,67 Ja.

При ширине коридора аэротенка b = 6 м, удельном расходе воздуха на аэратор в виде фильтросных труб Jab = 90 м3/(м2ч) и площади одного ряда фильтросных труб dy = 300 mm; d = 0,3 м2/м.

Количество рядов фильтросных труб в первой половине аэротенки вытеснителя составило

;

во второй половине: = 3,92/2 = 1,96.

В данном случае следует принять на первой половине аэротенка и регенератора число рядов фильтросных труб - 4, на второй половине - 2, соответственно распределив расходы воздуха.

2.11. С целью сокращения длины воздуховодов количество стояков для подвода воздуха к аэраторам следует ограничить минимально возможным числом, которое определяется из заданной неравномерности распределения воздуха вдоль коридора аэротенка.

Таблица 10

Геометрические размеры, мм Допустимая неравномерность подачи воздуха, % Максимальная удельная производительность, м3/(м×ч) Перепад давления, кПа
наружный диаметр толщина стенки      
длина трубы на 1 стояк, м
            3-10
            3-10
            3-10

Число стояков зависит от длины обслуживаемого ими участка фильтросного канала, фильтросной или дырчатой трубы.

Параметры аэраторов из фильтросных труб приведены в табл. 10, из фильтросных пластин - в табл. 11, из дырчатых труб в табл.12.

Таблица 11

Геометрические размеры, мм Допустимая неравномерность подачи воздуха, % Максимальная удельная производительность, м3/(м.ч) Перепад давления, кПа
ширина глубина      
длина канала на 1 стояк, м
            2-10
            2-10

Таблица 12

Геометрические размеры, мм Допустимая неравномерность подачи воздуха, % Максимальная удельная производительность м3/(м2×ч) Перепад давления, кПа
условный проход наружный диаметр диаметр отверстий число отверстий на 1 трубы      
длина трубы на стояк, м
          15,5 17,2   1,5
        5,7 9,6 13,6 36,5 1,5
        2,6 4,0 5,0   1,5
  88,5       24,0 26,4 36,5 1,5
  88,5       10,7 14,0 73,0 1,5
  88,5     4,5 6,7 8,5 110,0 1,5
        27,3 34,2 37,9 36,5 1,5
        11,3 17,4 23,4   1,5
        7,1 10,7 13,6   1,5

Пример. Определить основные параметры аэратора (фильтросный канал) для обеспечения аэрации коридора аэротенка - смесителя длиной 100 м, шириной 9 м с интенсивностью аэрации 10 м3/(м2ч) при допускаемой неравномерности подачи воздуха 15 %.

Интенсивность подачи воздуха на 1 м длины коридора

J¢¢a = J¢db = 10 . 9 = 90 м3/(м2×ч).

Указанная интенсивность при перепаде 1,5 кПа (новые пластины) может быть обеспечена установкой трех параллельных рядов фильтросных каналов. Для допустимой неравномерности 15 % при глубине канала 100 мм находим из табл. 11 максимальную длину аэратора на 1 стояк - 88 м. Стояк присоединен к середине обслуживаемогоим участка. Для коридора длиной 100 м потребуется таким образом 2 стояка. Полученное данным методом число стояков является минимально допустимым и может быть увеличено из конструктивных соображений.

Следует обратить внимание, что при этом должны быть предусмотрены упругие вставки на температурных швах резервуара аэротенка.

2.12. Эрлифтные аэраторы. При наличии и сточных водах значительных количеств карбонатных солей, смол, жиров, вязких нефтепродуктов и волокнистых веществ, способных вызвать быструю кольматацию пор в мелкопузырчатых пневматических аэраторах, целесообразно применение эрлифтных аэраторов. По эффективности они приближаются к механическим, но не имеют сложного привода и не подвержены засорениям.

Принцип действия эрлифтных аэраторов совмещают в себе среднепузырчатую аэрацию с помощью сжатого воздуха в эрлифте и дополнительную аэрацию при изливе струи через кромку водослива (рис. 14). Конструкция этих аэраторов разработана ВНИИ ВОДГЕО.

Рис. 14. Схема эрлифтного аэратора

1 - аэрационная решетка; 2 - нижний конус диффузора; 3 - труба диффузора: 4 - верхний конус диффузора с гребенчатым водосливом; 5 - лопатки; 6 - воздухопровод; 7 - опорные стойки

Ориентировочно производительность эрлифтного аэратора Qm, кг/ч по кислороду определяется по уравнению

, (42)

где hb - высота кромки водослива, рекомендуется принимать hb = 0,45 - 0,5 м; dэp - диаметр трубы аэратора dэp = (0,6-1) Ва; Нэp - глубина погружения аэратора Нэp = 3,5 - 4 м.

Растворимость кислорода Са определяется по формуле (38).

Пример расчета. Для подбора эрлифтных аэраторов приведен график (рис. 15). Оптимальный режим работы эрлифтных аэраторов наблюдается при Ja1 = 10-15м3/(м2×ч) и dэp = 0,3 - 1,2 м.

Рис. 15. Зависимость удельных энергозатрат и производительности по кислороду от диаметра эрлифтных аэраторов при различных значениях интенсивности аэрации

1 - Ja = 5; 2 - Ja = 10; 3 - Ja = 15м3/(м2×ч)

Исходные данные: тип сооружения - аэротенк-смеситель первой ступени. БПК сточных вод Len = 550 мг/л; Lех = 137 мг/л; расчетный расход qW = 40000 мз/cyт = 1667 м3/ч; период аэрации taim = 3 ч; растворимость кислорода Са = 9 мг/л; концентрация растворенного кислорода в аэротенке Со = 2 мг/л; ширина коридора аэротенка b = 9 м.

В данном случаепринят dэp = 0,1 b, т.е. dэp = 0,19 = 0,9 м, Ja 1 = 15 м3/(м2×ч).

Объем аэротенка Waim = qWtaim = 1667 . 3 = 4999 м3.

По рис. 15 при Ja 1 = 15 м3/(м2×ч) производительность по кислороду этого типоразмера аэратора приближенно составит 65 кг/ч.

Для определения необходимого числа эрлифтных аэраторов может быть использована формула (65) СНиП 2.04.03-85

Следует принять Nma = 18 ед. При общей длине коридоров аэротенка La = Waim / Hatb = 4999/(4,5×9) = 123 м.

Расстояние между аэраторами l1 = 123/18 = 6,86 м. Расход воздуха QB1 на один аэратор при Ja1 = 15 м3/(м2×ч).

QB1. = Ja1 bl1 = 15×9×6,86 = 926 м3/ч = 257 л/с.







Дата добавления: 2015-09-04; просмотров: 684. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия