Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение уравнений и систем уравнений





Уравнение вида ax=b, где x- переменная, a и b – некоторые числа, называется линейным уравнением с одной переменной.

Пример, 4(x+7)= 3 - x

4x + 28= 3 – x

4x+x= 3 -28

5x = -25

x = -25:5

x= -5

Линейным уравнением с двумя переменными называется уравнение вида ax+by=c, где x и y – переменные, a, b и c - некоторые числа.

Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство.

Пример,

выразим из второго уравнения y=3x+9, получим

Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.

Находим дискриминант D = b2 − 4ac.

· Если D < 0, корней нет;

· Если D = 0, есть ровно один корень;

· Если D > 0, корней будет два.

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Пример:

Решить квадратные уравнения:

1. x2 − 2x − 3 = 0;

2. 15 − 2x − x2 = 0;

3. x2 + 12x + 36 = 0.

Решение:

Первое уравнение:
x2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2)2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Второе уравнение:
15 − 2x − x2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2)2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их:

Наконец, третье уравнение:
x2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 122 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

Ответ: 1) x1 = 3; x2 = -1; 2) x1 = −5; x2 = 3; 3) x = −6.

 

Решим дробное рациональное уравнение

x – 3 1 x + 5
—— + — = ———.
x – 5 x x(x – 5)

Решение: Находим общий знаменатель. Это x(x – 5). Итак:

x2 – 3х x – 5 x + 5
——— + ——— = ———
x(x – 5) x(x – 5) x(x – 5)

Теперь снова освобождаемся от знаменателя, поскольку он одинаковый для всех выражений. Сводим подобные члены, приравниваем уравнение к нулю и получаем квадратное уравнение:

x2 – 3x + x – 5 = x + 5

x2 – 3x + x – 5 – x – 5 = 0

x2 – 3x – 10 = 0.

Решив квадратное уравнение, найдем его корни: –2 и 5. Проверим, являются ли эти числа корнями исходного уравнения. При x = –2 общий знаменатель x(x – 5) не обращается в нуль. Значит, –2 является корнем исходного уравнения. При x = 5 общий знаменатель обращается в нуль, и два выражения из трех теряют смысл. Значит, число 5 не является корнем исходного уравнения.

Ответ: x = –2

 







Дата добавления: 2015-09-04; просмотров: 579. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия