Неравенства и системы неравенств с одной переменной второй степени
Неравенства вида , , , , где – заданные числа, причем , называются квадратными неравенствами или неравенствами второй степени. Основной метод решения таких неравенств – метод интервалов. Если дискриминант квадратного уравнения положительный, то квадратный трехчлен можно разложить на множители , где, и проверить знак выражения в промежутках, на которые разбивают действительную ось найденные значения корней. Если дискриминант квадратного уравнения отрицательный, то квадратный трехчлен не меняет знак ни при каких действительных значениях переменной. Если и , то для всех . Если и , то для всех . Если дискриминант квадратного трехчлена равен нулю, то выражение представляет собой полный квадрат и, в зависимости от знака , принимает либо только неотрицательные, либо только неположительные значения. Пример. Решить неравенство . Решение. Найдем корни квадратного трехчлена: , , . Неравенство можно записать в виде . Обозначим на числовой оси точки , и проверим знак выражения в промежутках, на которые разбивают действительную ось найденные значения корней. Если , то ; если , то ; если , то . Поэтому решением неравенства будут значения переменной . Ответ: . Пример. Решить неравенство . Решение. Найдем дискриминант квадратного трехчлена: . Поскольку , , то квадратный трехчлен положителен при всех действительных значениях переменной . Ответ: . Пример. Решить неравенство . Решение. Найдем дискриминант квадратного трехчлена: . Поскольку , , то квадратный трехчлен отрицателен при всех действительных значениях переменной , то есть выражение всегда меньше нуля, а исходное неравенство не имеет решений. Ответ: неравенство не имеет решений. Пример. Решить неравенство . Решение. Второй из сомножителей в приведенном неравенстве не является линейным. Поэтому разложим выражение на множители: . Перепишем исходное неравенство в виде . Отметим на действительной оси корни многочлена , то есть те значения переменной , при которых сомножители обращаются в нуль: , , , . В интервалах , , , , определим знак многочлена , подставляя вместо переменной произвольные значения из интервалов. Решением неравенства будут те интервалы, в которых выражение принимает положительные значения
|