Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Неравенства и системы неравенств с одной переменной второй степени





Неравенства вида , , , , где – заданные числа, причем , называются квадратными неравенствами или неравенствами второй степени. Основной метод решения таких неравенств – метод интервалов. Если дискриминант квадратного уравнения положительный, то квадратный трехчлен можно разложить на множители , где, и проверить знак выражения в промежутках, на которые разбивают действительную ось найденные значения корней. Если дискриминант квадратного уравнения отрицательный, то квадратный трехчлен не меняет знак ни при каких действительных значениях переменной. Если и , то для всех . Если и , то для всех . Если дискриминант квадратного трехчлена равен нулю, то выражение представляет собой полный квадрат и, в зависимости от знака , принимает либо только неотрицательные, либо только неположительные значения.

Пример. Решить неравенство .

Решение. Найдем корни квадратного трехчлена: , , . Неравенство можно записать в виде . Обозначим на числовой оси точки , и проверим знак выражения в промежутках, на которые разбивают действительную ось найденные значения корней. Если , то ; если , то ; если , то . Поэтому решением неравенства будут значения переменной .

Ответ: .

Пример. Решить неравенство .

Решение. Найдем дискриминант квадратного трехчлена: . Поскольку , , то квадратный трехчлен положителен при всех действительных значениях переменной .

Ответ: .

Пример. Решить неравенство .

Решение. Найдем дискриминант квадратного трехчлена: . Поскольку , , то квадратный трехчлен отрицателен при всех действительных значениях переменной , то есть выражение всегда меньше нуля, а исходное неравенство не имеет решений.

Ответ: неравенство не имеет решений.

Пример. Решить неравенство .

Решение. Второй из сомножителей в приведенном неравенстве не является линейным. Поэтому разложим выражение на множители: . Перепишем исходное неравенство в виде . Отметим на действительной оси корни многочлена , то есть те значения переменной , при которых сомножители обращаются в нуль: , , , . В интервалах , , , , определим знак многочлена , подставляя вместо переменной произвольные значения из интервалов. Решением неравенства будут те интервалы, в которых выражение принимает положительные значения

 







Дата добавления: 2015-09-04; просмотров: 889. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия