Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Число натуральних дільників даного n Î N





Функція t(n) визначена при всіх натуральних n і її значення дорівнює числу всіх натуральних дільників числа n.

Теорема. t(n) = (a1 + 1)(a2 + 1)…(am + 1), де a1, a2, …, am – показники степенів простих дільників у канонічному розкладі числа Наслідок 1. Якщо р – просте, то t(p)=2.

Наслідок 2. Функція t(n) мультиплікативна.

Приклад 3. Знайти число всіх натуральних дільників числа 360.

Знаходимо канонічний розклад числа 360=23 × 32 × 51, тоді

t(360) = (3 + 1)(2 + 1)(1 + 1) = 24.

Функція Ейлера j(n) визначена для всіх n Î N, її значення дорівнює кількості натуральних чисел взаємно простих з числом n, які не перебільшують n.

Доведемо основні властивості цієї функції:

Властивість 1. j(1) = 1.

Властивість 2. j(р) = р – 1, якщо р – просте.

Властивість 3. j(рk) = рk-1 (р – 1), якщо р – просте.

Властивість 4. j(а×b) = j(а) × j(b), якщо (а, b)=1.

Теорема. , де – канонічний розклад числа.

Приклад 1. Обчислити функцію Ейлера для чисел 17; 720.

1) n =17 – просте, тому використовуємо властивість (2): j(17)= 17 – 1= 16.

2) n =720 – складене, 720 = 24 × 32 × 5.

j(720) = j(24 × 32 × 5) = j(24) × j(32) × j(5) = 24-1 × (2 – 1) × 32-1 × (3 – 1) × (5 – 1) = 23 × 1 × 3 × 2 × 4 = 192.

Приклад 2. Знайти натуральне число n, якщо j(n) = 3600 і n = 3 k × 5 m × 7s, де k, m, s Î N.

Обчислимо:

j(n)=j(3 k ×5 m ×7 s)=j(3 k)×j(5 m)×j(7 s) = 3 k- 1× 2× 5 m- 1×4 × 7 s- 1∙6.

Маємо рівняння: 3 k- 1 × 2 × 5 m- 1×4 × 7 s -1× 6 = 3600.

3 k -1 × 5 m -1 × 7 s -1= 75 = 3 × 52,

звідки

k – 1 = 1, m – 1 = 2, s – 1 = 0;

k = 2, m = 3, s = 1.

Шукане число n = 32 × 53 × 71 = 7875.







Дата добавления: 2015-09-04; просмотров: 496. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия