Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решето Ератосфена





Задача: Виписати всі прості числа від 2 до N=30.

Випишемо усі натуральні числа від 2 до 30: 2,3,4,…,30. (1) Перше число у цьому ряду – 2. Це число просте. Закреслимо у ряду (1) всі числа, кратні 2, крім самого числа 2, тобто кожне друге після 2.

Першим не закресленим числом після 2 у ряді (1) є число 3. Число 3 не ділиться на 2, бо в іншому випадку ми б закреслили його: отже, число 3 ділиться лише на 1 і самого себе, тому воно просте. Закреслимо тепер у ряді (1) всі числа, кратні 3, крім самого числа 3, тобто кожне третє після 3.

Першим не закресленим числом після 3 є число 5; воно не ділиться ні на 2, ні на 3, бо в іншому випадку воно виявилось б закресленим; отже, 5 ділиться тільки на 1 і на самого себе, тому воно просте число. У ряду (1) закреслимо всі числа, кратні 5, крім самого числа 5, тобто кожне п’яте після 5, і т.д. Закресливши в ряду (1) всі числа, кратні простим числам, не більшим ніж

 

, дістанемо таблицю всіх простих чисел, які не перевищують числа 30.

Уперше для складання таблиць простих чисел описаний щойно метод застосував грецький математик Ератосфен. Він писав числа на папірусі, натягнутому на рамку, числа він не закреслював, а проколював. Внаслідок цього він дістав дещо схоже на решето: складені числа «просіювались» крізь це решето, а прості числа залишались. Тому цей метод називають решетом Ератосфена.

Математичні підстави цього метода базуються на наступній теоремі:







Дата добавления: 2015-09-04; просмотров: 541. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия