Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Степенная функция





 

Функция где х – переменная величина, a – заданное число, называется степенной функцией.

Если то – линейная функция, ее график – прямая линия (см. параграф 4.3, рис. 4.7).

Если то – квадратичная функция, ее график – парабола (см. параграф 4.3, рис. 4.8).

Если то ее график – кубическая парабола (см. параграф 4.3, рис. 4.9).

Степенная функция

Это обратная функция для

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция нечетная.

4. Периодичность функции: непериодическая.

5. Нули функции: x = 0 – единственный нуль.

6. Наибольшее и наименьшее значения функции: наибольшего и наименьшего значений функция не имеет.

7. Промежутки возрастания и убывания: функция является возрастающей на всей области определения.

8. График функции симметричен графику кубической параболы относительно прямой y = x и изображен на рис. 5.1.

 
 

 


Рис. 5.1

 

Степенная функция

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция четная.

4. Периодичность функции: непериодическая.

5. Нули функции: единственный нуль x = 0.

6. Наибольшее и наименьшее значения функции: принимает наименьшее значение для x = 0, оно равно 0.

7. Промежутки возрастания и убывания: функция является убывающей на промежутке и возрастающей на промежутке

8. График функции (для каждого n Î N) «похож» на график квадратичной параболы (графики функций изображены на рис. 5.2).

 

 


Рис. 5.2

 

Степенная функция

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция нечетная.

4. Периодичность функции: непериодическая.

5. Нули функции: x = 0 –единственный нуль.

6. Наибольшее и наименьшее значения: наибольшего и наименьшего значений функция не имеет при любом

7. Промежутки возрастания и убывания: функция является возрастающей на всей области определения.

8. График функции (для каждого ) «похож» на график кубической параболы (графики функций изображены на рис. 5.3).

 
 

 


Рис. 5.3

Степенная функция

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция нечетная.

4. Периодичность функции: непериодическая.

5. Нули функции: нулей не имеет.

6. Наибольшее и наименьшее значения функции: наибольшего и наименьшего значений функция не имеет при любом

7. Промежутки возрастания и убывания: функция является убывающей в области определения.

8. Асимптоты: (ось Оу) – вертикальная асимптота;

(ось Ох) – горизонтальная асимптота.

9. График функции (для любого n) «похож» на график гиперболы (графики функций изображены на рис. 5.4).

 
 

 


Рис. 5.4

 

Степенная функция

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция четная.

4. Периодичность функции: непериодическая.

5. Наибольшее и наименьшее значения функции: наибольшего и наименьшего значений функция не имеет при любом

6. Промежутки возрастания и убывания: функция является возрастающей на и убывающей на

7. Асимптоты: x = 0 (ось Оу) – вертикальная асимптота;

y = 0 (ось Ох) – горизонтальная асимптота.

8. Графиками функций являются квадратичные гиперболы (рис. 5.5).

 
 

 


Рис. 5.5

 

Степенная функция

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция не обладает свойством четности и нечетности.

4. Периодичность функции: непериодическая.

5. Нули функции: x = 0 –единственный нуль.

6. Наибольшее и наименьшее значения функции: наименьшее значение, равное 0, функция принимает в точке x = 0; наибольшего значения не имеет.

7. Промежутки возрастания и убывания: функция является возрастающей на всей области определения.

8. Каждая такая функция при определенном показателе является обратной для функции при условии

9. График функции «похож» на график функции при любом n и изображен на рис. 5.6.

 

 


Рис. 5.6

 

Степенная функция

1. Область определения:

2. Множество значений:

3. Четность и нечетность: функция нечетная.

4. Периодичность функции: непериодическая.

5. Нули функции: x = 0 – единственный нуль.

6. Наибольшее и наименьшее значения функции: наибольшего и наименьшего значений функция не имеет при любом

7. Промежутки возрастания и убывания: функция является возрастающей на всей области определения.

8. График функции изображен на рис. 5.7.

 
 

 


Рис. 5.7

Пример 1. Построить график функции:

1) 2)

Решение. 1) Для построения графика данной функции используем правила преобразования графиков:

а) строим график функции (он показан на рис. 5.7);

б) график функции получаем из графика функции путем параллельного переноса его на одну единицу вправо по оси Ох и на две единицы вниз по оси Оу;

в) график исходной функции получаем из графика функции оставляем ту часть графика, которая находится справа от оси Оу и на оси Оу, другую – отбрасываем (на рис. 5.8 она показана пунктиром). Оставшуюся часть графика дополняем симметричной ей относительно оси Оу (рис. 5.8).

 

 


Рис. 5.8

 

2) Преобразуем функцию к виду Заметим, что График этой функции получаем путем следующих преобразований:

а) строим график функции

б) график получаем из предыдущего симметричным отображением относительно оси Оу;

в) график функции получаем из предыдущего смещением на 4 единицы вправо по оси Ох;

г) график заданной функции получаем из графика функции параллельным переносом его на две единицы вниз по оси Оу (рис. 5.9).

 
 

 

 


Рис. 5.9

 







Дата добавления: 2015-09-04; просмотров: 1971. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия