Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства корней





Пусть a, b Î R, тогда:

1)

2)

3)

4)

5)

6) где a ³ 0 в случае

7) где в случае

8) где в случае

 

Пример 1. Вычислить

Решение. 1-й способ. Выделим полные квадраты подкоренных выражений:

Тогда получим

2-й способ. Обозначим вычисляемое выражение через a, т. е.

Заметим, что

Возведем обе части полученного равенства в квадрат:

Тогда

Поскольку исходное выражение положительно, в ответе получаем a = 4.

 

Пример 2. Упростить выражение

Решение. 1-й способ. Используем формулы квадрата разности и суммы, а также свойства корней. Получаем:

2-й способ. При упрощении иррациональных выражений часто бывает эффективным метод рационализации, основанный на замене переменных.

Введем такую замену переменных, чтобы корни извлеклись:

Заданное выражение приобретает вид

Упрощаем его, используя формулы сокращенного умножения:

Возвращаясь к старым переменным, приходим к ответу

 

Пример 3. Избавиться от иррациональности в знаменателе:

1) 2) 3)

Решение. 1) Умножим числитель и знаменатель дважды на сопряженные выражения и воспользуемся формулой разности квадратов:

2) Домножим числитель и знаменатель на неполный квадрат разности и воспользуемся формулой суммы кубов:

3) Умножим числитель и знаменатель дважды на сопряженные выражения:

 







Дата добавления: 2015-09-04; просмотров: 428. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия