Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

E.2.6. Очереди, стеки, деревья





1. Для работы с очередью, т.е. последовательностью элементов, в которую элементы всегда добавляются в конец, а удаляются из начала ("первым пришел - первым ушел"), нужны обычно следующие операции:

ОЧИСТОЧ(Q) - создать пустую очередь Q (очистить очередь);

ПУСТОЧ(Q) - проверить, является ли очередь Q пустой;

ПЕЧОЧ(Q) – распечатать содержимое очереди;

ВОЧЕРЕДЬ(Q,x) - добавить в конец очереди Q элемент x;

ИЗОЧЕРЕДЬ(Q,x) - удалить из очереди Q первый элемент, присвоив его параметру x.

Требуется для каждого из указанных ниже представлений очереди описать соответствующий тип ОЧЕРЕДЬ, считая, что все элементы очереди имеют некоторый тип ТЭО, и реализовать в виде процедур или функций перечисленные операции над очередью (если операция по тем или иным причинам не может быть выполнена, следует передать управление некоторой процедуре ОШИБКА(k), считая ее уже описанной, где k - номер ошибки: 1 - переполнение очереди, 2 - исчерпание очереди).

Представление очереди (n – целая константа >1):

а) для каждой очереди отводится свой массив из N компонентов типа ТЭО, в котором элементы очереди занимают группу соседних компонент, индексы первой и последней из которых запоминаются; при этом, когда очередь достигает правого края массива, все ее элементы сдвигаются к левому краю;

б) аналогичное представление, но массив как бы склеивается в кольцо, поэтому если очередь достигает правого края массива, то новые элементы записываются в начало массива;

в) для каждой очереди создается свой однонаправленный список из элементов типа ТЭО, при этом запоминаются ссылки на первое и последнее звенья списка.

2. Для работы со стеком, т.е. последовательностью элементов, в которой элементы всегда добавляются в конец и удаляются из конца ("последним пришел - первым ушел"), нужны обычно следующие операции:

ОЧИСТЕК(S) - создать пустой стек S (очистить стек);

ПЕЧСТЕК(S) – распечатать содержимое стека;

ПУСТЕК(S) - проверить, является ли стек S пустым;

ВСТЕК(S,X) - добавить в конец стека S элемент X;

ИЗСТЕК(S,X) - удалить из очереди S последний элемент, присвоив его параметру X.

Требуется для каждого из указанных ниже представлений стека описать соответствующий тип СТЕК, считая, что все элементы стека имеют некоторый тип ТЭC, и реализовать в виде процедур или функций перечисленные операции над стеком (если операция по тем или иным причинам невыполнима, следует передать управление некоторой процедуре ОШИБКА(k), считая ее уже описанной, где k - номер ошибки: 1 -переполнение стека, 2 -исчерпание стека).

Представление стека (n -целая константа>1):

а) для каждого стека отводится свой массив из n компонентов типа ТЭC, в начале которого располагаются элементы стека, при этом запоминается индекс компоненты массива, занятой последним элементом стека;

б) для каждого стека создается свой однонаправленный список, в котором элементы стека располагаются в обратном порядке.

3. Используя очередь (предварительно выбрав и описав ее тип и создав все нужные для решения функции и процедуры для работы с этой очередью (ОЧИСТОЧ(Q), ПУСТОЧ(Q), ПЕЧОЧ(Q), ВОЧЕРЕДЬ(Q,x), ИЗОЧЕРЕДЬ(Q,x) (задача 1)), решить следующую задачу.

За один просмотр файла f и без использования дополнительных файлов напечатать элементы файла f в следующем порядке: сначала - все числа, меньшие A, затем - все числа из отрезка [ A,B ] (где A<B), и, наконец, - все остальные числа, сохраняя исходный взаимный порядок в каждой из этих трех групп чисел.

4. Используя очередь (предварительно выбрав и описав ее тип и создав все нужные для решения функции и процедуры для работы с этой очередью (ОЧИСТОЧ(Q), ПУСТОЧ(Q), ПЕЧОЧ(Q), ВОЧЕРЕДЬ(Q,x), ИЗОЧЕРЕДЬ(Q,x) (задача 1))), решить следующую задачу.

Содержимое текстового файла f, разделенное на строки, переписать в текстовый файл g, перенося при этом в конец каждой строки все входящие в нее цифры (с сохранением исходного взаимного порядка как среди цифр, так и среди остальных литер строки).

5. Используя очередь (предварительно выбрав и описав ее тип и создав все нужные для решения функции и процедуры для работы с этой очередью (ОЧИСТОЧ(Q), ПУСТОЧ(Q), ПЕЧОЧ(Q), ВОЧЕРЕДЬ(Q,x), ИЗОЧЕРЕДЬ(Q,x) (задача 1))), решить следующую задачу.

type имя= (Анна,..., Яков);

дети= array [имя,имя] of boolen;

потомки=file of имя;

Считая заданными имя И и массив Д типа ДЕТИ(Д[X,Y]=true, если человек по имени Y является ребенком человека по имени X), записать в файл P типа ПОТОМКИ имена всех потомков человека с именем И в следующем порядке: сначала - имена всех его детей, затем - всех его внуков, затем - всех правнуков и т.д..

6. Используя стек (предварительно выбрав и описав его тип и создав все нужные для решения функции и процедуры для работы с этим стеком (ПУСТЕК(S), ПЕЧСТЕК(S), ОЧИСТЕК(S), ВСТЕК(S,x) и ИЗТЕК(S,x) (задача 2)), решить следующую задачу.

Напечатать содержимое текстового файла t, выписывая литеры каждой его строки в обратном порядке.

7. Используя стек (предварительно выбрав и описав его тип и создав все нужные для решения функции и процедуры для работы с этим стеком (ПУСТЕК(S), ПЕЧСТЕК(S), ОЧИСТЕК(S), ВСТЕК(S,x) и ИЗТЕК(S,x) (задача 2))), решить следующую задачу.

Проверить, является ли содержимое текстового файла t правильной записью формулы следующего вида:

<формула>::= <терм> ï <терм>+<формула> ï <терм>-<формула>

<терм>::= <имя> ï <(<формула>) ï [<формула>] ï {<формула>}

<имя::= x ï y ï z

8. Используя стек (предварительно выбрав и описав его тип и создав все нужные для решения функции и процедуры для работы с этим стеком (ПУСТЕК(S), ПЕЧСТЕК(S), ОЧИСТЕК(S), ВСТЕК(S,x) и ИЗТЕК(S,x) (задача 2)), решить следующую задачу.

В текстовом файле f записана без ошибок формула следующего вида:

<формула>::= <цифра>ï М (<формула>,<формула>)ï м (<формула>,<формула>)

<цифра>::= 0 ï 1 ï 2 ï 3 ï 4 ï 5 ï 6 ï 7 ï 8 ï 9,

где М обозначает функцию max, а м обозначает функцию min.

Вычислить (как целое число) значение данной формулы (например,

М (5, м (6, 8))® 6).

9. Используя стек (предварительно выбрав и описав его тип и создав все нужные для решения функции и процедуры для работы с этим стеком (ПУСТЕК(S), ПЕЧСТЕК(S), ОЧИСТЕК(S), ВСТЕК(S,x) и ИЗТЕК(S,x) (задача 2)), решить следующую задачу.

В текстовом файле LOG записано без ошибок логическое выражение (ЛВ) в следующей форме:

<ЛВ>::=true ï false ï (ù <ЛВ>) ï (<ЛВ> Ù <ЛВ> ï (<ЛВ> È <ЛВ>),

где знаки ù, Ù и È обозначают соответственно отрицание, коньюнкцию и дизьюнкцию.

Вычислить (как boolean) значение этого выражения.

10. Используя очередь и/или стек (предварительно выбрав и описав их типы и создав все нужные для решения функции и процедуры для работы над ними (задача 1 и/или 2)), решить следующую задачу.

В текстовом файле f записан текст, сбалансированный по круглым скобкам:

<текст>::=<пусто> ï <элемент><текст>;

<элемент>::=<буква> ï (<текст>)

Требуется для каждой пары соответствующих открывающей и закрывающей скобок напечатать номера их позиций в тексте, упорядочив пары номеров в порядке возрастания номеров позиций закрывающих скобок. Например, для текста A+(45-f(X)*(B-C)) надо напечатать: 8 10; 12 16; 3 17.

11. Используя очередь и/или стек (предварительно выбрав и описав их типы и создав все нужные для решения функции и процедуры для работы над ними (задача 1 и/или 2)), решить следующую задачу.

В текстовом файле f записан текст, сбалансированный по круглым скобкам:

<текст>::=<пусто> ï <элемент><текст>;

<элемент>::=<буква> ï (<текст>)

Требуется для каждой пары соответствующих открывающей и закрывающей скобок напечатать номера их позиций в тексте, упорядочив пары номеров в порядке возрастания номеров позиций открывающих скобок. Например, для текста A+(45-f(X)*(B-C)) надо напечатать 3 17; 8 10; 12 16.

12. Под "выражением" будем понимать конструкцию следующего вида:

<выражение>::=<терм> ï <терм><терм><знак><выражение>

<знак+->::=+ ï -

<терм>::=<множитель> ï <множитель>*<терм>

<множитель>::=<число>ï<переменная>ï(<выражение>)ï<множитель>**<число>

<число>::=<цифра>

<переменная>::=<буква>,

где ** обозначают возведение в степень.

Постфиксной формой записи выражения a Ñ b называется запись, в которой знак операции размещен за операндами: ab Ñ. Примеры:

a-b ® ab-

a*b+c ® ab*c- (т.е. (ab*)c+)

a*(b+c) ® abc+* (т.е. a(bc+)*)

a+b**c**d*e ® abc**d**e*+

Описать функцию value(postfix), которая вычисляет как целое число значение выражения (без переменных), записанного в постфиксной форме в текстовом файле postfix.

Использовать следующий алгоритм вычисления. Выражение просматривается слева направо. Если встречается операнд (число), то его значение (как целое) заносится в стек, а если встречается знак операции, то из стека извлекаются два последних элемента (это операнды данной операции), над ними выполняется операция и ее результат записывается в стек. В конце концов в стеке останется только одно число - значение всего выражения.

13. Описать процедуру translate(infix,postfix), которая переводит выражение (определение "выражения" смотри в задаче 12), записанное в обычной (инфиксной) форме в текстовом файле infix, в постфиксную форму и в таком виде записывает его в текcтовый файл postfix.

Использовать следующий алгоритм перевода. В стек записывается открывающая скобка, и выражение просматривается слева направо. Если встречается операнд (число или переменная), то он сразу переносится в файл postfix. Если встречается открывающая скобка, то она заносится в стек, а если встречается закрывающая скобка, то из стека извлекаются находящиеся там знаки операций до ближайшей открывающей скобки, которая также удаляется из стека, и все знаки (в порядке их извлечения) записываются в файл postfix. Когда же встречается знак операции, то из конца стека извлекаются (до ближайшей скобки, которая сохраняется в стеке) знаки операций, старшинство которых больше или равно старшинству данной операции, и они записываются в файл postfix, после чего рассматриваемый знак заносится в стек. В заключение выполняются такие же действия, как если бы встречалась закрывающая скобка.

14. Описать (нерекурсивную) процедуру infixprint(postfix), которая печатает в обычной (инфиксной) форме выражение (определение "выражения" смотри в задаче 12), записанное в постфиксной форме в текстовом файле postfix (лишние скобки желательно не печатать).

15. Сформировать файл из символов и с помощью очереди за один просмотр файла напечатать элементы файла в следующем порядке: сначала все символы, отличные от цифр, а затем все цифры, сохраняя исходный порядок в каждой из этих групп символов.

16. Сформировать файл из символов и с помощью очереди за один просмотр файла напечатать сначала все гласные буквы, затем знаки препинания и, наконец, - все согласные, сохраняя исходный порядок в каждой из этих групп символов.

17. В текстовом файле записана без ошибок формула вида: цифра или R (формула, формула), или L (формула, формула), где R обозначает функцию взять правое число, L -взять левое число. Вычислить значение данной формулы (например, R(8, R(3,L(4,5)))=4).

18. Сформировать файл из натуральных чисел и с помощью очереди за один просмотр файла напечатать элементы файла в следующем порядке: сначала все однозначные числа, затем двузначные, сохраняя исходный порядок чисел в каждой из этих групп.

19. Сформировать файл из символов и с помощью очереди за один просмотр файла напечатать элементы файла напечатать элементы файла в следующем порядке: сначала все символы, отличные от знаков препинания и цифр, затем знаки препинания и наконец – все цифры, сохраняя исходный порядок в каждой из этих групп символов.

20. Сформировать файл из натуральных чисел и с помощью очереди за один просмотр файла напечатать элементы файла напечатать элементы файла в следующем порядке: сначала все числа, делящиеся на 5, затем все нечетные числа, не делящиеся на 5, и наконец – все четные числа, не делящиеся на 5, сохраняя исходный порядок в каждой из этих групп чисел.

21. В текстовом файле записана без ошибок формула вида: цифра или s (формула, формула) или p (формула, формула), где s (a,b) = (a+b) mod 10,

p (a,b) = (a*b) mod 10. Вычислить значение этой формулы.

Например, p (6, s (8, 4)) = 2.

22. Сформировать файл из натуральных чисел и с помощью очереди за один просмотр файла напечатать элементы файла в следующем порядке: сначала все однозначные числа, затем все двузначные. Первая группа чисел выводится в исходном порядке, вторая - в обратном порядке. Например: 2, 15, 7, 24, 37, 8 ® 2, 7, 8, 37, 24, 15.

23. Сформировать файл из символов и с помощью очереди за один просмотр файла напечатать элементы файла в следующем порядке: сначала все знаки препинания в исходном порядке, затем все согласные в обратном порядке, затем все согласные в обратном порядке, и наконец – все гласные в исходном порядке.

24. В текстовом файле записана без ошибок формула вида: цифра или m (формула, формула) или p (формула, формула), где m (a, b) = (a-b) mod 10,

p (a, b) = (a+b) mod 10. Вычислить значение этой формулы.

Например, m (9, p (p (3, 5), m (3, 8))) = 6.

В упражнениях 25-33 использовать двоичные деревья при следующем их описании.

type ТЭД=...: {тип элементов дерева}

дерево= ^ вершина;

вершина=record элем:ТЭД;

лев, прав:дерево end;

В этих упражнениях Т, и обозначают деревья, а Е – величину типа ТЭД.

25. Используя очередь или стек (предварительно описав его тип и операции над ним (упр.1 или упр.2)), описать процедуру или функцию, которая присваивает параметру Е элемент из самого левого листа непустого дерева Т (лист - вершина, из которого не выходит ни одной ветви). Продемонстрировать работу программы.

26. Используя очередь или стек (предварительно описав его тип и операции над ним (упр.1 или упр.2)), описать процедуру или функцию, которая определяет число вхождений элемента Е в дерево Т. Продемонстрировать работу программы.

27. Используя очередь или стек (предварительно описав его тип и операции над ним (упр.1 или упр.2)), описать процедуру или функцию, которая вычисляет среднее арифметическое всех элементов непустого дерева Т (ТЭД=real). Продемонстрировать работу программы.

28. Используя очередь или стек (предварительно описав его тип и операции над ним (упр.1 или упр.2)), описать процедуру или функцию, которая заменяет в дереве Т все отрицательные элементы на их абсолютные величины (ТЭД=real). Продемонстрировать работу программы.

29. Используя очередь или стек (предварительно описав его тип и операции над ним (упр.1 или упр.2)), описать процедуру или функцию, которая меняет местами максимальный и минимальный элементы непустого дерева Т, все элементы которого различны (ТЭД=real). Продемонстрировать работу программы.

30. Используя очередь или стек (предварительно описав его тип и операции над ним (упр.1 или упр.2)), описать процедуру или функцию, которая печатает элементы из всех листьев дерева Т (ТЭД=char). Продемонстрировать работу программы.

31. Используя очередь или стек (предварительно описав его тип и операции над ним (упр.1 или упр.2)), описать процедуру или функцию, которая печатает все элементы дерева Т по уровням (сначала - из корня дерева, затем (слева направо) - из вершин, дочерних по отношению к корню, затем (также слева направо) - из вершин, дочерних по отношению к этим вершинам, и т.д.) (ТЭД=integer). Продемонстрировать работу программы.

32. Используя очередь или стек (предварительно описав его тип и операции над ним (упр.1 или упр.2)), описать процедуру или функцию, которая находит в непустом дереве Т длину (число ветвей) пути от корня до ближайшей вершины с элементом Е; если Е не входит в Т, за ответ принять -1. Продемонстрировать работу программы.

33. Используя очередь или стек (предварительно описав его тип и операции над ним (упр.1 или упр.2)), описать процедуру или функцию, которая подсчитывает число вершин на n -ом уровне непустого дерева Т (корень считать вершиной 0-го уровня). Продемонстрировать работу программы.







Дата добавления: 2015-09-04; просмотров: 1532. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия