Видеостандарт MPEG-1
По стандарту MPEG-1 потоки видео и звуковых данных передаются со коростью 150 килобайт в секунду - с такой же скоростью, как и односкоростной CD-ROM проигрыватель - и управляются путем выборки ключевых видео кадров и заполнением только областей, изменяющихся между кадрами. К несчастью, MPEG-1 обеспечивает качество видеоизображения более низкое, чем видео, передаваемое по телевизионному стандарту. MPEG-1 был разработан и оптимизирован для работы с разрешением 352 ppl (point per line -- точек на линии) * 240 (line per frame -- линий в кадре) * 30 fps (frame per second -- кадров в секунду), что соответствует скорости передачи CD звука высокого качества. Используется цветовая схема - YCbCr (где Y - яркостная плоскость, Cb и Cr - цветовые плоскости). Как MPEG работает: В зависимости от некоторых причин каждый frame (кадр) в MPEG может быть следующего вида: · I (Intra) frame - кодируется как обыкновенная картинка. · P (Predicted) frame - при кодировании используется информация от предыдущих I или P кадров. · B (Bidirectional) frame - при кодировании используется информация от одного или двух I или P кадров (один предшествующий данному и один следующий за ним, хотя может и не непосредственно, см. Рис.1)
Последовательность кадров может быть например такая: IBBPBBPBBPBBIBBPBBPB... Последовательность декодирования: 0312645... Нужно заметить, что прежде чем декодировать B кадр требуется декодировать два I или P кадра. Существуют разные стандарты на частоту, с которой должны следовать I кадры, приблизительно 1-2 в секунду, соответствуюшие стандарты есть и для P кадров (каждый 3 кадр должен быть P кадром). Существуют разные относительные разрешения Y, Cb, Cr плоскостей (Таблица 4.1), обычно Cb и Cr кодируются с меньшим разрешением чем Y.
Таблица 4.1
Для применения алгоритмов кодировки происходит разбивка кадров на макроблоки каждый из которых состоит из определенного количества блоков (размер блока - 8*8 пикселей). Количество блоков в макроблоке в разных плоскостях разное и зависит от используемого формата Техника кодирования: Для большего сжатия в B и P кадрах используется алгоритм предсказания движения (что позволяет сильно уменьшить размер P и B кадров) на выходе которого получается: · Вектор смещения (вектор движения) блока который нужно предсказать относительно базового блока. · Разница между блоками (которая затем и кодируется). Так как не любой блок можно предсказать на основании информации о предыдущих, то в P и B кадрах могут находиться I блоки (блоки без предсказания движения).
Таблица 4.2
Метод кодировки блоков (либо разницы, получаемой при методе предсказание движения) содержит в себе: · Discrete Cosine Transforms (DCT - дискретное преобразование косинусов). · Quantization (преобразование данных из непрерывной формы в дискретную). · Кодировка полученного блока в последовательность. DCT использует тот факт, что пиксели в блоке и сами блоки связаны между собой (т.е. коррелированны), поэтому происходит разбивка на частотные фурье компоненты (в итоге получается quantization matrix - матрица преобразований данных из непрерывной в дискретную форму, числа в которой являются величиной амплитуды соответствующей частоты), затем алгоритм Quantization разбивает частотные коэффициенты на определенное количество значений. Рисунок 4.2 Encoder (кодировщик) выбирает quantization matrix которая определяет то, как каждый частотный коэффициент в блоке будет разбит (человек более чувствителен к дискретности разбивки для малых частот чем для больших). Так как в процессе quantization многие коэффициенты получаются нулевыми то применяется алгоритм зигзага для получения длинных последовательностей нулей (рисунок 4.2) Синхронизация и объединение звука и видео, осуществляется с помощью System Stream (рисунок 4.3), который включает в себя: · Системный слой, содержащий временную и другую информацию чтобы разделить и синхронизовать видео и аудио. · Компрессионный слой, содержащий видео и аудио потоки.
Видео поток (рисунок 4.4) содержит заголовок, затем несколько групп картинок (заголовок и несколько картинок необходимы для того, что бы обеспечить произвольный доступ к картинкам в группе в независимости от их порядка). Звуковой поток состоит из пакетов каждый из которых состоит из заголовка и нескольких звуковых кадров (audio-frame). Для синхронизации аудио и видео потоков в системный поток встраивается таймер, работающий с частотой 90 КГц (System Clock Reference -- SCR, метка по которой происходит увеличения временного счетчика в декодере) и Presentation Data Stamp (PDS, метка насала воспроизведения, вставляются в картинку или в звуковой кадр, чтобы объяснить декодеру, когда их воспроизводить. Размер PDS сотавляет 33 бита, что обеспечивает возможность представления любого временного цикла длинной до 24 часов).
MPEG-2 Стандарт MPEG-1 ориентирован на системы записи на компакт-диски (CD ROM) и низкоскоростные каналы передачи ТВ изображений (скорости цифрового потока 1,5 Мбит/с и меньше). При этом в стандарте MPEG-1 используется стандарт развертки с четкостью в четверо меньшей, чем в вещательном телевидении: 288 активных строк и 352 отсчета в активной части ТВ строки, для чего при кодировании сигналов ТВ систем обычной четкости производится децимация (прореживание) в два раза исходных ТВ отсчетов по вертикальным и горизонтальным направлениям ТВ растра. Стандарт MPEG-2 был специально разработан для кодирования ТВ сигналов вещательного телевидения. Он позволяет получить полную четкость декодированного ТВ изображения, соответствующую Рекомендации 601 МККР. (При скорости передачи видеоданных 9 Мбит/с качество ТВ изображения соответствует студийному). С принятием стандарта MPEG-2 работы по компрессии видеоданных перешли в область практической реализации. На данный момент можно назвать, по крайней мере, десяток фирм, которые выпускают для продажи кодеры и декодеры по стандарту MPEG-2. Наиболее известны из них Philips, Panasonic, Page Micro Technology, CD Communication, WegenerCommunications, Scientific-Atlanta, NTL, Segem Group и др. В октябре 1995 г. через спутник Pan Am Sat начато 20-канальное ТВ вешание по стандарту MPEG-2, осуществляемое на территории Скандинавии, Бельгии, Нидерландов, Люксембурга, Ближнего Востока и Африки. В этой сети будет использовано более миллиона декодеров MPEG-2. На стандарт MPEG-2 ориентированы и создаваемая сейчас 100-канальная система непосредственного телевизионного вешания (НТВ) Канады, и 150-кальная система НТВ оператора спутника "Эхо-стар", а также 10-канальная система НТВ Австралии, как и системы НТВ других стран. В Российской Федерации телекомпания ВГТРК ввела в эксплуатацию четырехканальную систему НТВ по стандарту MPEG-2. Другие российские телекомпании также планируют начать НТВ по этому стандарту. Например РАО "Газпром" создает систему цифрового вещания в России по стандарту MPEG-2 с использованием спутников "Горизонт" и "Ямал". Здесь по одному стандартному каналу будет передаваться от трех до восьми ТВ программ. К созданию системы привлечены многие известные зарубежные фирмы. Вот некоторые из них: NEC, Vistek, Fuba, Scientific Atlanta и др. Пакет стандартов MPEG предусматривает и возможность перехода к телевидению высокой четкости. Первоначально алгоритмы сжатия видеоданных сигналов ТВЧ разрабатывались в виде самостоятельного стандарта MPEG-3, однако на последующих этапах стандарт MPEG-3 был объединен со стандартом MPEG-2, после чего стандарт MPEG-3, как самостоятельный, перестал использоваться. Следующее направление - стандарт MPEG-4. В двух словах - это организация видеоконференций при передаче видеоданных по цифровым телефонным каналам. При этом используется стандарт развертки с четкостью, в четыре раза меньшей, чем в стандарте MPEG-1. Так, кадр ТВ изображения содержит 144 активные строки и 176 отсчетов ТВ сигнала в активной части строки. Этот стандарт может также использоваться в низкоскоростных системах мультимедиа.
4.6.1 Стандарт кодирования MPEG-2 Даже в рамках одного стандарта, как показывает практика, передача сигналов телевидения - и цифровое здесь не исключение, ведется на разных уровнях качества. То же самое можно сказать и о телевизионных приемниках. Жесткие, а главное узкие допусковые интервалы, не жизненны, поскольку лишают систему гибкости, приспосабливаемости к разным условиям функционирования с ориентацией на различные слои потребителей. При этом любая перспективная система должна иметь резервы для перехода на более высокие уровни качества. Эти и многие другие соображения и требования легли в основу очень важного документ: ISO/IEC 13818-2. В этом документе определено, что стандарт MPEG-2 - это целое семейство взаимосогласованных совместимых цифровых стандартов информационного сжатия телевизионных сигналов с различной степенью сложности используемых алгоритмов. Традиции качества ТВ изображения для вещательных систем в стандарте ISO/I ЕС 13818-2 устанавливаются введением четырех уровней для формата разложения строк ТВ изображения и пяти профилем для форматов кодирования сигналов яркости и цветности. Общая идеология построения стандарта поясняется таблицей. Расположенный в нижней части таблицы уровень называется "низким уровнем" и ему соответствует новый класс качества ТВ изображения, которое вводится в стандарте MPEG-2 - телевидение ограниченной четкости. В этом случае в кадре ТВ изображения содержится 288 активных строк (в два раза меньше, чем в телевидении обычной четкости) и каждая строка дискретизируется на 352 отсчета. Кодирование сигналов телевидения обычной четкости выполняется в соответствии с основным уровнем, т.е. с форматом разложения на 576 активных строк в кадре, которые кодируются с использованием 720 отсчетов на строку.
Таблица 2.1
Высокий-1440 и высокий-1920 предусматриваются для кодирования сигналов телевидения высокой четкости (ТВЧ). В обоих ''высоких" уровнях кадр ТВ изображения содержит 1152 активные строки (вдвое больше, чем в телевидении обычной четкости). Эти строки дискретизируются соответственно на 1440 ч или 1920 отсчетов. Профиль, в котором используется наименьшее число функциональных операций по компрессии видеоданных, назван простым профилем. В нем при компрессии видеоданных используется компенсация движения изображения и гибридное дискретно-косинусное преобразование. Следующий профиль назван основным профилем. Он содержит все функциональные операции шестого профиля и одну новую: предсказание по двум направлениям. Эта новая операция, естественно, повышает качество ТВ изображения. Следующий за основным назван профилем с масштабируемым отношением сигнал/шум. Термин «масштабирование», в данном случае, означает возможность обмена одних показателей системы на другие. Этот профиль к функциональным операциям основного профиля добавляет новую - масштабирование. Основная идея - повышение устойчивости цифрового телевидения и сохранение работоспособности при неблагоприятных условиях приема. Операция масштабирования позволяет в рассматриваемом случае повысить устойчивость системы за счет некоторого снижения требований к допустимому уровню отношения сигнал/шум в воспроизводимом ТВ изображении. При масштабировании поток видеоданных разделяют на две части. Одна из них несет наиболее значимую часть информации - ее называют основным сигналом. Вторую часть, несущую менее значимую информацию, называют дополнительным сигналом. Декодирование только одного основного сигнала позволяет получить ТВ изображение с пониженным отношением сигнал/шум. Одновременное декодирование основного и дополнительного сигналов повышает отношение сигнал/шум до исходного значения. И все же, что можно извлечь из идеи деления потока данных на более и менее значимые части? А все дело в защите системы от ошибок. Помехоустойчивое кодирование требует введения дополнительных бит, что повышает общий поток информации. Задача упрощается, когда более мощная защита применяется только к части информации и тем самым соблюдается разумный баланс между уровнем потока видеоданных и степенью их зашиты. При неблагоприятных условиях приема (например, при низкой напряженности радиополя, при приеме на комнатную антенну и т.п.) сохраняется возможность устойчивого декодирования более защищенного основного сигнала, а неустойчиво воспринимаемый дополнительный сигнал просто отключается. Как уже сказано, это ведет к росту уровня шума, зато система остается работоспособной. Не так уж редки ситуации, когда сигналы приходится передавать по каналам с ограниченной пропускной способностью. Деление потока видеоданных на два, позволяет использовать и "плохие" каналы, ограничивая передачу основным сигналом. Следующий, четвертый профиль назван специально масштабируемым профилем. Здесь, естественно, сохранены все операции предшествующего профиля и добавлена новая - разделение потока видеоданных по критерию четкости ТВ изображения. Этот профиль обеспечивает переходы между ныне действующими системами и телевидением высокой четкости. С этой целью видеоданные сигнала ТВЧ разделяются на три потока. Первый - это основной (значимый) поток видеоданных, например, по стандарту разложения на 625 строк. Второй поток несет дополнительную информацию об изображении с числом строк до 1250. Одновременное декодирование первого и второго потоков видеоданных позволяет получить телевизионное изображение высокой четкости, но с пониженным отношением сигнал/шум. В третьем потоке сосредоточена менее значимая информация, его декодирование позволяет повысить отношение сигнал/шум в видеоканале до уровня, принятого в ТВЧ. Обычно первый поток видеоданных, представляющих сигнал 625-строчного ТВ, - это 6 Мбит/с, дополняющий его до ТВЧ - 6 Мбит/с, а повышающий отношение сигнал/шум до уровня, когда шумы визуально незаметны -12 Мбит/с. В рассмотренных четырех профилях при кодировании сигналов яркости и цветности используется формат представления видеоданных 4:2:0, в котором число отсчетов сигналов цветности по сравнению с сигналом яркости уменьшается в два раза не только по горизонтальным, но и по вертикальным направлениям. Следующий, пятый профиль называется высшим профилем, и он включает в себя все функциональные операции специального профиля 4:2:2, при котором число отсчетов сигналов цветности в вертикальных направлениях остается тем же, что и у сигнала яркости (рисунок 4.5).
Щ Щ Щ Щ Щ О Щ О Щ Щ Щ Щ 4:4:4 Щ О Щ О 4:2:2 Щ Щ Щ Щ Щ О Щ О Щ Щ Щ Щ Щ О Щ О
Щ О Щ О Щ О О О О О О О 4:2:0 Щ О О О 4:1:1 Щ О Щ О Щ О О О О О О О Щ О О О
Щ - яркостный и цветоразностный сигнал, О – яркостный сигнал
Рисунок 4.5 – Форматы представления видеоданных
Приведенные в таблице пять профилей и четыре уровня образуют двадцать возможных комбинаций видеосигнала, из которых, вероятнее всего, только одиннадцать будут полезными или необходимыми. Для этих комбинаций (согласованные точки) в таблице указаны максимальные значения скорости передачи видеоданных. Комбинации, которые сегодня не вызывают интереса, в стандарте MPEG-2, пока, не нормированы и в таблице отмечены крестами. Для всех стандартизованных точек указаны максимальные потоки видеоданных, которые позволяют получить ТВ изображение, свободное от каких-либо дефектов. В иных случаях они могут проявиться в процессах кодирования/декодирования видеосигнала. Используемые в конкретных кодеках потоки видеоданных могут быть меньше (в несколько раз) указанных значений. Выбор уровня компрессии и, в конечном итоге, уровня потока зависит от допустимой степени искажений ТВ изображения. Таким образом, стандарт MPEG-2 позволяет гибко менять скорость передачи видеоданных в очень широких пределах. Надо заметить, системы кодирования стандарта МРЕG-2 могут работать как с чересстрочной так и с прогрессивной развертками, при частоте полей 50 или 60 Гц и т. д. Для каждой стандартизованной точки таблицы оговорено число отсчетов сигнала яркости на активной части строки. Рассмотренные комбинации параметров информационного кодирования пригодны для работы различными цифровыми трактами и накопителями (записывающими устройствами). Стандарт MPEG-2 принципиально нацелен в будущее, все богатство упомянутых выше комбинаций станет работать, хотя и скоро, но не сейчас. Так, промышленность готова и будет выпускать в этом году ТВ приемники только одной системы кодирования: "Основной уровень - Основной профиль" с чересстрочным разложением изображения на 625 строк. Эта система принята для первого поколения цифровых телевизоров для непосредственного ТВ приема со спутников, работающих в диапазоне 11/12 ГГц, и кабельной сети распределения.
|