Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определенный интеграл





1.Задачи, приводящие к понятию определенного интеграла.

Задача 1. О массе линейного материального стержня.

Пусть на отрезке [a,b] оси ОХ распределена некоторая масса m, причем

¾¾[¾¾¾¾¾¾¾]¾® x

a b

плотность массы в каждой точке зависит от положения точки, т.е. яв­ляется функцией аргумента х, ρ=ρ(х)-функция распределения массы.

Нам требуется найти массу стержня.

Если бы плотность была постоянной и равна была бы ρ, то масса равна была бы m=ρ(b-a). Но плотность меняется от точки к точке.

Тогда разобьём промежуток [a,b] произвольно на n частей точ­ками x1, x 2…..xn-1;

На каждом элементарном промежутке [xi;xi+1] будем считать, что плотность постоянна и равна ρ в точке zi, где ziÎ [xi,xi+1] тогда масса стержня элементарного промежутка ρ(zi)(xi+1 – xi)=ρ(zi)∆xi. Для массы всего cтержня будем иметь приближённую формулу m≈∑ρ(zi)∆x:

Погрешность этой формулы будет уменьшаться с уменьшением длины элементарного промежутка, λ=max(xi;xi+1). За точное значение массы принимают предел полученной суммы при λ →0 т.е.

n

m=lim år(zi)Dxi

l®0 i=1

 

Замечание. Такое определение массы имеет смысл, когда суще­ствует такой предел, и он не зависит ни от числа точек разбиения на элементарные части, ни от способа выбора точек zi.

Задача 2. (О площади криволинейной трапеции). Найти пло­щадь ограниченную y=f(x), осью OX и x=a; x=b;

Решение. Разобьём промежуток [a, b] на n частей произвольно.

x0 =a<x1<x2<…xi<xi+1<…xn-1<xn=b

площадь элементарного прямоугольника Si=f(xi)∆xi. Площадь криволинейной трапеции приближенно равна

n

S≈∑ f(xi)∆xi.

i=1

Погрешность этой формулы уменьшится, если λ=max(∆xi)→0. Тогда перейдем к пределу

n

S=lim å f(xi)Dxi

l®0 i=1







Дата добавления: 2015-09-04; просмотров: 347. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия