Представление гармонических колебаний векторами
Для непосредственного сложения синусоидальных функций необходимо производить достаточно громоздкие операции. Существенное упрощение достигается, если синусоидальную функцию изобразить в виде вращающегося вектора. Векторное изображение синусоиды строится следующим образом (см. рис. 3.2). Рис. 3.2. На плоскости из начала координат под углом , равному начальной фазе синусоиды, проводится прямая и на ней откладывается в масштабе отрезок, равный амплитуде колебания. Угол откладывается против часовой стрелки от горизонтальной оси, если ; и по часовой стрелке, если . Если угол откладывать от горизонтальной оси, то проекция вектора на вертикальную ось равна (в выбранном масштабе) мгновенному значению синусоидальной функции. Построим векторное изображение суммы двух функций (рис. 3.3): (3.5) Очевидно, что вместо сложения синусоид удобно геометрически складывать их векторные изображения. Таким образом, получили простейшую векторную диаграмму. Рис. 3.3. Векторная диаграмма представляет собой совокупность векторов, изображающих синусоидальные функции одинаковой частоты, построенных с соблюдением масштаба и правильной ориентации их друг относительно друга по фазе. Условились: вместо амплитуд на векторных диаграммах откладывать действующее значение функции.
|