Строение генов у про- и эукариот.
Строение генов у эукариот: общепринятая модель строения гена – экзон – интронная структура. Экзон – последовательность ДНК, которая представлена в зрелой РНК. В состав гена должен входить как минимум один экзон. В среднем в гене содержится 8 экзонов. Факторы инициации и терминации транскрипции входят в состав первого и последнего экзона соответственно. Интрон – последовательность ДНК, включенная между экзонами, не входит в состав зрелой РНК. Интроны имеют определенные нуклеотидные последовательности, определяющие их границы с экзонами: на 5 конце – GU, на 3 – AG. Могут кодировать регуляторные РНК. Сигнал полиаденилирования 5 – AATAAA -3 входит в состав последнего экзона. Поли сайты защищают мРНК от деградации. 5 и 3 фланкирующие последовательности – копирование гена происходит в направлении 5 – 3, на флангах находятся специфические сайты, ограничивающие ген и содержащие регуляторные элементы его транскрипции. Регуляторные элементы – промотор, энхансеры, сайленсеры, инсуляторы (способствуют образованию петель хромосом, ограничивающих влияние соседних регуляторных элементов). Гены эукариот по строению и характеру транскрипции значительно отличаются от прокариотических генов. Их отличительной особенностью является прерывность, т. е. чередование в них последовательностей нуклеотидов, которые представлены (экзоны) или не представлены (интроны) в мРНК. Гены эукариот не группируются в опероны, поэтому каждый из них имеет собственные промотор и терминатор транскрипции. 240.Как связаны между собой метилирование и гистоновый код в процессе реализации генетической информации в клетке? Гистоновый код — разнообразный набор модификаций Модификации хроматина включают ковалентные посттрансляционные модификации торчащих амино-терминальных гистоновых «хвостов» путем добавления к ним ацетильных, метильных, фосфатных или других групп. Метильные модификации могут представлять собой моно-, ди-, или три-метилирование. Эти модификации и составляют потенциальный «гистоновый код», лежащий в основе специфической хроматиновой структуры, которая, в свою очередь, влияет на экспрессию соседних генов. Так как хроматин состоит из плотно упакованных цепей ДНК, завернутых вокруг гистонов, паттерн укладки ДНК в хроматин несомненно лежит в основе изменений генной активности. Хотя гистоновые коды и хроматиновые структуры могут стабильно передаваться от родительской в дочерние клетки, механизмы, лежащие в основе репликации таких структур, поняты не полностью.
|