Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Неоклассическая модель роста Р. Солоу — Т. Свана.





Уравнение сбалансированного роста. Модель устойчивого экономического роста независимо друг от друга предложили в 1956 г. профессор МТИ Роберт Солоу (р. 1924) и профессор Австралийского национального университета в Канберре Тревор Сван (1918 — 1989). Оба они были, также как Харрод и Домар, неокейнсианцами; Сван участвовал в создании Белой книги полной занятости, составленной группой экономистов по заказу правительственного кабинета Лейбористской партии Австралии; Солоу на протяжении десятилетий тесно сотрудничал с П. Самуэльсоном. Но их модель получила название неоклассической,поскольку включила неоклассическую предпосылку гибкости (а не жёсткости) пропорций между применяемыми количественными показателями труда и капитала.

В статье «Вклад в теорию экономического роста»[97] Р. Солоу доказывал, что при гибкости пропорций труда и капитала и постоянной отдаче от масштаба невозможно противоречие между естественным и гарантированным темпами роста; система может приспособиться к любому темпу роста рабочей силы и в итоге приблизиться к состоянию пропорционального расширения.

Приняв, как и в модели Харрода—Домара, неизменный темп роста населения и постоянство нормы сбережений s ( откуда I = sY), Солоу включил в свою модель линейно-однородную производственную функцию Y = F{K,L)}, откуда (если разделить все члены уравнения на L и обозначить доход на одного работника Y/L через y, акапиталоинтенсивность K/L через k) можно получить

y= L F(k,1) = L f (k).

Темп прироста k тогда можно записать как

dk / k = d K / K — d L /L = sY/ K — n = s — L / K f (k) — n

или

dk’ = sf (k) — nk

Это так называемое «фундаментальное уравнение» Солоу словами формулируется следующим образом: прирост капиталовооружённости одного работника — это то, что осталось от удельных инвестиций (сбережений) после того, как удалось обеспечить капитальными благами всех дополнительных работников.

Если sf(k) = nk, то капиталовооруженность остается прежней (dk = 0), т.е. экономика растет без каких-либо изменений в соотношении между факторами. Это и есть сбалансированный рост, траектория которого в модели Солоу, в противоположность модели Харрода—Домара, является устойчивой.

Прямая (n+d)k на графике (рис. 23.2) показывает, сколько каждый работник
должен сберегать и инвестировать из своего дохода, чтобы обеспечить будущих работников (в том числе своих собственных детей) капитальными благами.
Кривая sf(k) демонстрирует, каковы его фактические сбережения
в зависимости от достигнутого уровня капиталовооружённости.
С ростом капиталовооружённости k темп роста инвестиций /сбереже-
ний падает. Вертикальное расстояние между кривой и
прямой обозначает в соответствии с фундаментальным уравнением
Солоу дифференциальное изменение показателя капиталовооружён-
ности dk. В точке k0 оно равно нулю и наблюдается сбалансирован-
ный рост. Во всех точках левее k0 (например, k1) капиталовооружённость
будет расти, а во всех точках правее k0 (например, k2) падать,
так что экономика постоянно сдвигается в сторону k0 , и траектория сбалансированного роста является устойчивой.

В модели Солоу норма сбережений s имеет значение только до выхода экономики на траекторию устойчивого развития: чем больше величина s, тем выше график sk и соответственно уровень k0. Но как только рост стал сбалансированным, его дальнейший темп зависит только от роста населения и технологического прогресса.

Рис. 23.2. Модель роста Солоу.

 







Дата добавления: 2015-09-04; просмотров: 556. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия