Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Мгновенные сосредоточенные источники теплоты





а) Мгновенный точечный источник на поверхности полубесконечного тела. В точку 0 на поверхности полубесконечного тела (рис. 18-а) в начальный момент t= 0 введено количество теплоты Q Дж. Начальную температуру тела примем равной нулю. Граница тела хОу не пропускает теплоты, т.е. при z= 0 градиент ¶ T/¶z= 0.

Теплоотдачей в окружающую среду с поверхности полубесконечного тела пренебрегают потому, что на температурное поле основное влияние оказывает распространение теплоты в глубь тела путем теплопроводности.

Уравнение температурного поля мгновенного точечного источника Q на поверхности полубесконечного тела аналогично уравнению температурного поля (46) мгновенного точечного источника 2 Q в неограниченном теле:

. (61)

Действительно, в случае неограниченного тела плоскость хОу также можно считать адиабатической, т. к. при действии точечного источника изотермическими поверхностями являются сферы с центром в точке 0, и при z= 0, градиент ¶ T/¶z= 0. Поэтому неограниченное тело с точечным источником 2 Q можно представить составленным из двух полубесконечных тел, на поверхности которых действуют точечные источники Q.

Из уравнения (61) следует, что все точки на полусфере с постоянным радиусом R имеют в данный момент времени одинаковую температуру, т.е. температурное поле симметрично относительно точки 0. Изотермическими поверхностями являются полусферы с центром 0. Температура в любой точке тела прямо пропорциональна количеству введенной теплоты Q.

Распределение температуры по радиусу-вектору R описывается нормальным законом распределения вероятностей. Кривизна распределения (рис. 20-а) зависит от значения времени t.

а) б)

Рис. 20. Процесс распространения теплоты мгновенного точечного источника в полубесконечном теле (Q =2000 Дж, cg= 40 Дж/см3K, а= 0,1 см2/с).

 

В начале процесса кривые распределения температуры высокие и крутые. В начальный момент времени кривая совпадает с осью ординат. По мере распространения теплоты температурные кривые становятся более пологими и температура выравнивается, стремясь к нулю.

Рассмотрим как изменяется температура точек тела во времени (рис. 20-б). В начальный момент t =0 температура всех точек тела, кроме точки 0 (R =0), равна нулю. По мере распространения теплоты мгновенного точечного источника температуры точек тела повышаются, достигают наибольшего значения, а затем убывают, стремясь к нулю. Чем ближе к источнику расположена точка тела, тем раньше начинает возрастать ее температура, тем быстрее она растет и тем выше ее наибольшее значение. С течением времени температуры различных точек тела сближаются и стремятся к нулю.

б) Мгновенный линейный источник в пластине. К линейному элементу 00' пластины (рис. 18-в) толщиной d приложен в момент времени t =0 мгновенный линейный источник Q с линейной интенсивностью Q1 = Q / d Дж/см.

Если верхняя и нижняя плоскости пластины не пропускают теплоты, то температура в любой точке пластины будет оставаться одинаковой по толщине, и уравнение температурного поля будет аналогичным уравнению (47) температурного поля мгновенного линейного источника в неограниченном теле.

Если же учитывать теплообмен пластины с окружающей средой, то температура по толщине пластины окажется неодинаковой - будет понижаться в направлении к наружным слоям пластины. Однако, при малой толщине пластины эта неравномерность температуры незначительна и ею пренебрегают, считая температуру осредненной по толщине. При этом влияние теплоотдачи учитывают следующим образом. Пусть на поверхностях пластины имеется теплоотдача с коэффициентом a в окружающую среду с нулевой температурой. Тогда каждый элементарный объем пластины ddxdy (рис. 21), нагретый до температуры T отдает за время dt в окружающую среду через обе поверхности пластины количество теплоты:

.

Рис. 21. Схема теплоотдачи с поверхности нагретого элемента пластины

Мгновенное понижение температуры за счет теплоотдачи равно:

.

Выражая скорость охлаждения dT/dt, получаем:

,

где - коэффициент температуроотдачи, с-1.

Дифференциальное уравнение теплопроводности для пластины с теплоотдачей имеет вид:

. (62)

Оно отличается от уравнения Фурье для плоского поля (23) слагаемым (-bT), которое учитывает влияние теплоотдачи на скорость изменения температуры ¶T/¶t в любой точке пластины.

Температурное поле мгновенного линейного источника в пластине с теплоотдачей является решением уравнения (62) и имеет вид:

, (63)

где - расстояние от источника.

Оно отличается от уравнения (47) множителем e- bt, учитывающим теплоотдачу с поверхности пластины. Таким образом, значение теплоотдачи возрастает с увеличением времени процесса t и коэффициента температуроотдачи b, т. е. с уменьшением толщины пластины d, объемной теплоемкости су и с увеличением коэффициента теплоотдачи a.

Температурное поле (63) симметрично относительно оси Oz, т.е. изотермическими поверхностями являются круговые ци­линдры с осью Oz.

Качественно процесс распространения теплоты в пластине протекает так же, как и в полубесконечном теле. Вдоль радиуса вектора r температура распределена по нормальному закону. Крутизна температурных кривых уменьшается с увеличением времени. Однако, время t входит в уравнение (63) в первой степени, а в уравнение (61) в степени 3/2. Поэтому процесс распространения теплоты в пластине замедлен по сравнению с процессом в полубесконечном теле. Это связано с тем, что поток теплоты в пластине стеснен ограничивающими ее плоскостями.

в) Мгновенный плоский источник в стержне. В сечении x =0 неограниченного стержня (рис. 18-г) в момент t= 0 приложен мгновенный плоский источник Q, распределенный равномерно по сечению стержня с поверхностной интенсивностью Q 2= Q/F Дж/см2, где F— площадь сечения стержня.

Если боковая поверхность стержня не пропускает теплоты, то температура в любом сечении стержня будет одинаковой по всему сечению, и уравнение температурного поля будет аналогичным уравнению (48) температурного поля мгновенного плоского источника в неограниченном теле. При наличии теплоотдачи с поверхности стержня температура в любом его сечении распределена неравномерно. Однако, при небольшой величине F принимают, что температура практически выравнена по поперечному сечению стержня. Тогда теплоотдачу с поверхности стержня учитывают так же, как и с поверхности пластины.

Для стержня коэффициент температуроотдачи:

,

где р - периметр поперечного сечения стержня.

Дифференциальное уравнение теплопроводности для стержня с теплоотдачей имеет вид:

. (64)

Температурное поле мгновенного плоского источника в стержне с теплоотдачей является решением уравнения (64):

, (65)

т.е. теплоотдача с поверхности стержня также учитывается множителем e- bt. Влияние теплоотдачи возрастает с увеличением времени процесса t, коэффициента теплоотдачи a, периметра сечения р и с уменьшением площади сечения F и объемной теплоемкости су.

Температурное поле (65) является линейным и симметричным относительно плоскости х= 0. Качественно процесс распространения теплоты в стержне похож на процессы в полубесконечном теле и в пластине. По оси Ох температура распределена по нормальному закону. Тепловой поток в стержне еще более стеснен по сравнению с пластиной и полубесконечным телом. Поэтому процесс изменения температуры во времени в стержне происходит еще медленнее, чем в пластине.







Дата добавления: 2015-09-07; просмотров: 2247. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия