Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Рассмотрим двумерную случайную величину





(X, Y). Если обе функции регрессии Y на X и X на Y линейны (см. § 15), то говорят, что X и К связаны ли­нейной корреляционной зависимостью. Очевидно, что гра­фики линейных функций регрессии — прямые линии, причем можно доказать, что они совпадают с прямыми средне­квадратической регрессии (см. § 20). Имеет место следу­ющая важная теорема.

Теорема. Если двумерная случайная величина (X, Y) распределена нормально, то X и Y связаны линейной корреляционной зависимостью.

Доказательство. Двумерная плотность вероят­ности (см. § 19)

Где

и = (х —аг)/а*, v = {у —а,)/о,.

Плотность вероятности составляющей X (см. § 19, замечание)

Найдем функцию регрессии М (У |х), для чего сначала найдем условный закон распределения величины Y при Х—х [см. § 14, формула (**)]:

Подставив (*) и (**) в правую часть этой формулы и выполнив выкладки, имеем

Заменив и и v по формулам (**), окончательно получим


Полученное условное распределение нормально с ма­тематическим ожиданием (функцией регрессии Y на X)

M{Y\x) = a9+r ^{x—aj

UJC

и дисперсией aj(l— г3).

Аналогично можно получить функцию регрессии X на Y :

М(Х\у) = а1 + г^-(у—аг).

Так как обе функции регрессии линейны, то корре­ляция между величинами X и Y линейная, что и требо­валось доказать.

Принимая во внимание вероятностный смысл пара­метров двумерного нормального распределения (см. § 19), заключаем, что уравнения прямых регрессии

У—а, = г-^-(дс—at), x—at = г %*-(у—а%)

совпадают с уравнениями прямых среднеквадратической регрессии (см. § 20).

Задачи







Дата добавления: 2015-09-06; просмотров: 447. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия