Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Рассмотрим двумерную случайную величину





(X, Y). Если обе функции регрессии Y на X и X на Y линейны (см. § 15), то говорят, что X и К связаны ли­нейной корреляционной зависимостью. Очевидно, что гра­фики линейных функций регрессии — прямые линии, причем можно доказать, что они совпадают с прямыми средне­квадратической регрессии (см. § 20). Имеет место следу­ющая важная теорема.

Теорема. Если двумерная случайная величина (X, Y) распределена нормально, то X и Y связаны линейной корреляционной зависимостью.

Доказательство. Двумерная плотность вероят­ности (см. § 19)

Где

и = (х —аг)/а*, v = {у —а,)/о,.

Плотность вероятности составляющей X (см. § 19, замечание)

Найдем функцию регрессии М (У |х), для чего сначала найдем условный закон распределения величины Y при Х—х [см. § 14, формула (**)]:

Подставив (*) и (**) в правую часть этой формулы и выполнив выкладки, имеем

Заменив и и v по формулам (**), окончательно получим


Полученное условное распределение нормально с ма­тематическим ожиданием (функцией регрессии Y на X)

M{Y\x) = a9+r ^{x—aj

UJC

и дисперсией aj(l— г3).

Аналогично можно получить функцию регрессии X на Y :

М(Х\у) = а1 + г^-(у—аг).

Так как обе функции регрессии линейны, то корре­ляция между величинами X и Y линейная, что и требо­валось доказать.

Принимая во внимание вероятностный смысл пара­метров двумерного нормального распределения (см. § 19), заключаем, что уравнения прямых регрессии

У—а, = г-^-(дс—at), x—at = г %*-(у—а%)

совпадают с уравнениями прямых среднеквадратической регрессии (см. § 20).

Задачи







Дата добавления: 2015-09-06; просмотров: 447. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия