Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Рассмотрим двумерную случайную величину





(X, Y). Если обе функции регрессии Y на X и X на Y линейны (см. § 15), то говорят, что X и К связаны ли­нейной корреляционной зависимостью. Очевидно, что гра­фики линейных функций регрессии — прямые линии, причем можно доказать, что они совпадают с прямыми средне­квадратической регрессии (см. § 20). Имеет место следу­ющая важная теорема.

Теорема. Если двумерная случайная величина (X, Y) распределена нормально, то X и Y связаны линейной корреляционной зависимостью.

Доказательство. Двумерная плотность вероят­ности (см. § 19)

Где

и = (х —аг)/а*, v = {у —а,)/о,.

Плотность вероятности составляющей X (см. § 19, замечание)

Найдем функцию регрессии М (У |х), для чего сначала найдем условный закон распределения величины Y при Х—х [см. § 14, формула (**)]:

Подставив (*) и (**) в правую часть этой формулы и выполнив выкладки, имеем

Заменив и и v по формулам (**), окончательно получим


Полученное условное распределение нормально с ма­тематическим ожиданием (функцией регрессии Y на X)

M{Y\x) = a9+r ^{x—aj

UJC

и дисперсией aj(l— г3).

Аналогично можно получить функцию регрессии X на Y :

М(Х\у) = а1 + г^-(у—аг).

Так как обе функции регрессии линейны, то корре­ляция между величинами X и Y линейная, что и требо­валось доказать.

Принимая во внимание вероятностный смысл пара­метров двумерного нормального распределения (см. § 19), заключаем, что уравнения прямых регрессии

У—а, = г-^-(дс—at), x—at = г %*-(у—а%)

совпадают с уравнениями прямых среднеквадратической регрессии (см. § 20).

Задачи







Дата добавления: 2015-09-06; просмотров: 447. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия