Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Рассмотрим двумерную случайную величину





(X, Y). Если обе функции регрессии Y на X и X на Y линейны (см. § 15), то говорят, что X и К связаны ли­нейной корреляционной зависимостью. Очевидно, что гра­фики линейных функций регрессии — прямые линии, причем можно доказать, что они совпадают с прямыми средне­квадратической регрессии (см. § 20). Имеет место следу­ющая важная теорема.

Теорема. Если двумерная случайная величина (X, Y) распределена нормально, то X и Y связаны линейной корреляционной зависимостью.

Доказательство. Двумерная плотность вероят­ности (см. § 19)

Где

и = (х —аг)/а*, v = {у —а,)/о,.

Плотность вероятности составляющей X (см. § 19, замечание)

Найдем функцию регрессии М (У |х), для чего сначала найдем условный закон распределения величины Y при Х—х [см. § 14, формула (**)]:

Подставив (*) и (**) в правую часть этой формулы и выполнив выкладки, имеем

Заменив и и v по формулам (**), окончательно получим


Полученное условное распределение нормально с ма­тематическим ожиданием (функцией регрессии Y на X)

M{Y\x) = a9+r ^{x—aj

UJC

и дисперсией aj(l— г3).

Аналогично можно получить функцию регрессии X на Y :

М(Х\у) = а1 + г^-(у—аг).

Так как обе функции регрессии линейны, то корре­ляция между величинами X и Y линейная, что и требо­валось доказать.

Принимая во внимание вероятностный смысл пара­метров двумерного нормального распределения (см. § 19), заключаем, что уравнения прямых регрессии

У—а, = г-^-(дс—at), x—at = г %*-(у—а%)

совпадают с уравнениями прямых среднеквадратической регрессии (см. § 20).

Задачи







Дата добавления: 2015-09-06; просмотров: 447. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия