Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Рассмотрим двумерную случайную величину





(X, Y). Если обе функции регрессии Y на X и X на Y линейны (см. § 15), то говорят, что X и К связаны ли­нейной корреляционной зависимостью. Очевидно, что гра­фики линейных функций регрессии — прямые линии, причем можно доказать, что они совпадают с прямыми средне­квадратической регрессии (см. § 20). Имеет место следу­ющая важная теорема.

Теорема. Если двумерная случайная величина (X, Y) распределена нормально, то X и Y связаны линейной корреляционной зависимостью.

Доказательство. Двумерная плотность вероят­ности (см. § 19)

Где

и = (х —аг)/а*, v = {у —а,)/о,.

Плотность вероятности составляющей X (см. § 19, замечание)

Найдем функцию регрессии М (У |х), для чего сначала найдем условный закон распределения величины Y при Х—х [см. § 14, формула (**)]:

Подставив (*) и (**) в правую часть этой формулы и выполнив выкладки, имеем

Заменив и и v по формулам (**), окончательно получим


Полученное условное распределение нормально с ма­тематическим ожиданием (функцией регрессии Y на X)

M{Y\x) = a9+r ^{x—aj

UJC

и дисперсией aj(l— г3).

Аналогично можно получить функцию регрессии X на Y :

М(Х\у) = а1 + г^-(у—аг).

Так как обе функции регрессии линейны, то корре­ляция между величинами X и Y линейная, что и требо­валось доказать.

Принимая во внимание вероятностный смысл пара­метров двумерного нормального распределения (см. § 19), заключаем, что уравнения прямых регрессии

У—а, = г-^-(дс—at), x—at = г %*-(у—а%)

совпадают с уравнениями прямых среднеквадратической регрессии (см. § 20).

Задачи







Дата добавления: 2015-09-06; просмотров: 447. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия