Общее устройство систем капиллярного электрофореза. Основные ограничения метода.
Системы капиллярного электрофореза «Капель» предназначены для количественного и качественного определения состава проб веществ в водных и водно-органических растворах методом КЭ. «Капель-103Р» - наиболее простая модель с ручным управлением и пошаговым принципом работы. В прибор устанавливается только одна пробирка с анализируемым раствором. На приборе любой модификации без ограничений могут быть реализованы методики, использующие основные варианты КЭ - капиллярный зонный электрофорез (КЗЭ) или мицеллярную электрокинетическую хроматографию (МЭКХ). Первый вариант предназначен для анализа только ионных компонентов проб, второй - для анализа ионных и молекулярных форм веществ. В системах «Капель» можно задавать и изменять в ходе анализа: давление, напряжение, время анализа, температуру (для систем с жидкостным охлаждением капилляра), длину волны (модели 105/105М). Из ограничений КЭ следует отметить невысокую, по сравнению с ВЭЖХ, концентрационную чувствительность и требование к анализируемым соединениям растворяться в воде или водно-органических смесях. В то же время, недостаточную чувствительность определения при использовании УФ-детектирования (из-за малой длины оптического пути, равного внутреннему диаметру капилляра) может скомпенсировать использование таких видов детектирования, как лазерно-индуцированное флуориметрическое или масс-спектрометрическое в сочетании с различными приемами on-line концентрирования пробы (т. н. стэкинг и свиппинг).
67.Какова эффективность разделения методом капиллярного электрофореза (число теоретических тарелок) и за счет какого фактора она в основном достигается? Метод КЭ основан на разделении заряженных компонентов сложной смеси в кварцевом капилляре под действием приложенного электрического поля. Микрообъем анализируемого раствора (около 2 нл) вводят в капилляр, предварительно заполненный подходящим буферным электролитом. После подачи высокого напряжения (до 30 кВ) к концам капилляра компоненты смеси начинают двигаться с разной скоростью, зависящей от заряда, массы и величины ионного радиуса, и, соответственно, в разное время достигают зоны детектирования. Полученная последовательность пиков называется электрофореграммой; качественной характеристикой вещества является время миграции, а количественной - высота или площадь пика, пропорциональные концентрации вещества. 68.В чем заключается явление стекинга и какова его физическая природа? Явление стекинга наблюдается если электропроводность раствора пробы меньше электропроводности ведущего электролита. В этом случае в капилляре появляется участок с высоким сопротивлением и в соответствии с законом Ома падение напряжения на участке, занятом пробой, возрастает во столько раз, во сколько раз сопротивление пробы больше, чем сопротивление равного участка ведущего электролита. Таким образом, если сопротивление раствора пробы в капилляре будет в 10 раз больше, чем сопротивление ведущего электролита, градиент потенциала в зоне пробы будет в 10 раз выше, чем в остальной части капилляра. Высокий градиент потенциала в зоне пробы заставляет компоненты пробы быстрее мигрировать к границе зоны, где они в сконцентрированном и предварительно разделенном виде переходят в ведущий электролит, и там продолжают, но уже медленнее, движение к детектору. Описанное явление называется стекингом и широко используется в практике. Оно позволяет получать очень узкие пики определяемых компонентов и, как следствие, концентрация их в пике оказывается значительно выше, чем в исходной пробе. Практически стекинг осуществляется путем разбавления пробы перед вводом специальным буферным раствором (с концентрацией в 10 раз меньше, чем в рабочем буферном растворе) или дистиллированной водой. 69.Каков физический смысл критической концентрации мицеллообразования (ККМ)? Мицеллярная электрокинетическая хроматография (МЭКХ) объединяет электрофорез и хроматографию; получила наиболее широкое распространение среди других вариантов капиллярного электрофореза за счет способности разделять как ионогенные, так и незаряженные компоненты пробы. Разделение нейтральных соединений стало возможным благодаря введению в состав ведущего электролита поверхностно-активных веществ (ПАВ) - мицеллообразователей. Чаще всего используют анионные ПАВ (например, додецилсульфат натрия - ДДСН) в концентрациях выше критической концентрации мицеллообразования (ККМ), которая для ДДСН в водном растворе составляет 8 мМ. В этом случае в растворе электролита находятся преимущественно мицеллы и небольшая доля мономерной формы ПАВ. 70.Каково строение мицеллы и ее собственного двойного электрического слоя (ДЭС)? Мономеры состоят из гидрофобного «хвоста» и гидрофильной (в случае анионного ПАВ отрицательно заряженной) «головы». При формировании прямых мицелл мономерные фрагменты агрегируются неполярными концами внутрь, а внешняя сферическая поверхность мицеллы становится отрицательно заряженной. Каждая мицелла окружена собственным двойным электрическим слоем (ДЭС), внешнюю диффузную часть которого формируют катионы, присутствующие в растворе ведущего электролита. Число мономеров, образующих мицеллу, может колебаться от 60 до 100 молекул, однако общий заряд мицеллы существенно меньше из-за наличия в неподвижной части второго слоя ДЭС гидратированных катионов. Ни мицеллярная, ни мономерная форма АПАВ не взаимодействуют со стенкой кварцевого капилляра, но при подаче на капилляр высокого напряжения обе формы мигрируют к аноду, в то время как ЭОП направлен к катоду. Если в капилляр на анодной стороне ввести пробу, содержащую нейтральные и заряженные компоненты, то ЭОП будет переносить их к катоду, а навстречу будет двигаться поток отрицательно заряженных мицелл АПАВ. Нейтральные компоненты пробы распределяются между фазой раствора и мицеллярной фазой, причем константа распределения специфична для каждого соединения. В результате на выходе капилляра регистрируется электрофореграмма нейтральных компонентов, а также медленно мигрирующих анионов пробы.
|