Расчет ограничения силы тяги локомотива по сцеплению, то есть
зависимости FКСЦ = f(V) В локомотивах образование движущей силы (силы тяги) происходит вследствие взаимодействия колесных пар с рельсами за счет вращающего момента, создаваемого тяговым двигателем. К колесной паре 1 (см. рисунок 1) приложен вращающий момент МК, который передается от двигателя 2 через зубчатый редуктор, состоящий из шестерни 3 и зубчатого колеса 4. Шестерня 3 закреплена на валу ТЭД, а зубчатое колесо 4 - на оси колесной пары. Вращающий момент на колесной паре равен МК = МД µ η3, Нм, (20) где МД - момент на валу двигателя, Нм; µ - передаточное число зубчатой передачи; η3 - коэффициент полезного действия зубчатой передачи. Момент МК обычно представляют в виде пары сил F1 и F2 с плечом DК/2, одна из которых (F1) приложена к ободу колеса в точке касания с рельсом (точка А), а другая (F2) - к оси колесной пары. Поскольку силы F1 и F2, действующие на колесную пару, равны по величине и противоположно направлены, то они уравновешивают друг друга и не вызывают поступательного движения колес. В то же время, силы F1 и F2 могут создать вращение колеса. Подтверждением этого является следующий факт: колесные пары, вывешенные на домкратах над поверхностью рельса, при включении ТЭД начинают вращаться, однако движение локомотива отсутствует. Очевидно, что поступательное движение колесной пары будет возможно в том случае, если скомпенсировать действие силы F1 какой-либо дополнительной силой и нарушить тем самым баланс сил F1 и F2. Подобная ситуация возникает, когда колесная пара контактирует с рельсом и прижата к нему силой тяжести GТ.
Сила тяжести GТ, приходящаяся на одну ось локомотива, приложена к колесу и через точку контакта А действует на рельс. Реакция рельса на колесо GР по III закону Ньютона равна значению силы тяжести GТ по модулю и противоположна ей по направлению. Указанные силы, действующие на колесо в вертикальной плоскости, уравновешивают друг друга. В горизонтальной плоскости к ободу колеса приложена сила F1, которая, как и сила тяжести GT, через точку контакта А действует на рельс (сила F1 направлена вдоль поверхности рельсов, поэтому в случае их ненадежного крепления имеет место явление, известное как "угон пути"). Реакция рельса FР по III закону Ньютона равна силе F1 no модулю и противоположна ей по направлению. Поэтому силы F1 и FР, действующие на колесо в точке А, уравновешивают друг друга. Сила F2 остается неуравновешенной, что вызывает качение колеса и его поступательное движение относительно рельса. Следовательно, движущей силой (силой тяги) колесной пары является сила F2, развиваемая тяговым двигателем. Для удобства расчета ее значений, на практике в качестве силы тяги условились считать силу реакции рельса FР, равную по величине силам F1 и F2. При этом значения сил определяют, рассматривая равенство моментов
из которого следует, что
Данное уравнение было использовано при построении электротяговых характеристик локомотивов для расчета силы тяги ТЭД на ободе колеса FКД. Поскольку сила FР действует по касательной к колесу, ее называют касательной силой тяги. Для локомотива в целом касательную силу тяги FК можно определить как
Итак, касательная сила тяги - это сила реакции рельса на колесо, возникающая под действием внешнего вращающего момента и ограниченная силой сцепления колеса с рельсом. При увеличении вращающего момента на колесе МК касательная сила тяги FР, равная силе тяги ТЭД FКД, возрастает вплоть до уровня, соответствующего силе сцепления FСЦ (зона I на рисунке 2). Дальнейшее повышение момента МК (зона II) приводит к нарушению условия качения колеса F1=FP. Сила F1 равная FКД, не уравновешивается силой FР, равной FСЦ. В результате происходит срыв сцепления и начинается боксование,то есть проскальзывание колеса относительно поверхности рельса, при котором частота вращения якоря ТЭД nд резко увеличивается.
Рисунок 2 - Зависимость касательной силы тяги FР от силы тяги ТЭД FКД и силы сцепления колеса с рельсом FСЦ
-касательная сила тяги Fp; - сила тяги, развиваемая ТЭД, FКД=F1; -сила сцепления колеса с рельсом FСЦ.
Боксование приводит к интенсивному износу рабочих поверхностей колеса и рельса, разрушению вращающихся деталей якоря ТЭД под действием центробежных сил, возникновению кругового огня на коллекторе ТЭД и другим опасным явлениям. Чтобы не допускать их, установлены технические условия устойчивого движения локомотива, которые описываются неравенством
где FKmax - максимально допустимая касательная сила тяги локомотива;
где 2П - осевая нагрузка локомотива, 2П =23т.
Неравенство (24) выражает основной закон локомотивной тяги: для обеспечения устойчивости управляемого движения локомотива окружные усилия на ободах движущих колес, создаваемые тяговыми двигателями, не должны превосходить силу сцепления колес с рельсами. Коэффициент сцепления, а следовательно и сила сцепления, являются случайными величинами, на которые оказывают влияние многочисленные факторы: качество ремонта и содержания локомотивов, метеорологические условия поездки, текущее состояние пути и др. Для локомотивов одной серии при одинаковой скорости движения разброс возможных значений коэффициента сцепления относительно его среднего значения достигает ±50%. Поэтому для обеспечения устойчивости локомотивов против боксования устанавливают так называемый расчетный коэффициент сцепления ψK, величина которого меньше потенциального ψ0. При этом сила тяги по сцеплению составляет
Расчетный (нормативный) коэффициент сцепления локомотива ψK определяем экспериментальным путем и задаем так, чтобы обеспечить практически приемлемую надежность движения полновесных поездов (поездов расчетной массы) по тяжелым подъемам при плохих условиях сцепления. Характеристики сцепления ψK=f(V) для магистральных тепловозов определяются следующим образом
Для построения тяговых характеристик локомотивов предварительно рассчитаваем силу тяги по сцеплению FКСЦ при различной скорости движения локомотива по формулам (25) - (27). Диапазон изменения скорости принимаем равными от 0-30 км/ч. Полученные значения заносим в таблицу 6.
Таблица 6 Сила тяги локомотива по сцеплению
9. Построение токовой I=f(V) и тяговой FK=f(V) характеристик локомотива с ограничениями силы тока, касательной силы тяги и конструкционной скорости
Тяговые и токовые характеристики необходимы для расчетов движения поездов, перегрева обмоток тяговых электрических машин, расхода энергии локомотивами на перемещение поездов. Наиболее точно эти зависимости определяют экспериментальным путем, в процессе специальных испытаний локомотивов. Полученные графики FK=f(V) и I=f(V) официально регламентируют «Правилами тяговых расчетов для поездной работы». На стадии проектирования локомотивов указанные зависимости FK=f(V) и I=f(V) можно построить по электротяговым характеристикам. Для этого необходимо пересчитать данные таблицы 5, а именно: а) определить значения тока локомотива по величинам тока ТЭД: - ток тягового генератора тепловоза IГ, - по формуле (7); б) определить значения касательной силы тяги локомотива FК по Полученные результаты заносим в таблицу 7. Таблица 7. Рабочие характеристики локомотива
Порядок построения рабочих характеристик тепловоза: 1) По данным таблицы 7 выполняем построения графиков IГ=f(V) и FK=f(V) при разных режимах ослабления возбуждения (см. рисунок 6, 7 приложения). 2) В координатах V,IГ строим линии ограничений максимального 3) Рассчитываем значения силы тока ТГ, соответствующие автоматическим переходам ТЭД с одного режима возбуждения на другой: - ток переходов ПП <=> ОП1
- ток переходов ОП1, <=> ОП2
- Используя значения IГП-1 и IГ1-2 выполняем построения горизонтальных линий переходов ПП <=> ОП, и ОП1 <=> ОП2. 4) Определяем скорости тепловоза VП-1 и V1-2, соответствующие переходам ПП <=> ОП1 и ОП1 <=> ОП2. 5) Используя данные таблицы 7 и токовую характеристику 6) По графику IГ=f(V) определяем скорость продолжительного режима тепловоза VДЛ соответствующую номинальной силе тока ТГ IГН, a по значению VДЛ - длительную силу тяги тепловоза FКДЛ. Полученные значения основных технических параметров локомотива заносим в таблицу 9.
10. Определение основных технических параметров локомотива:
|