Последовательный интерфейс: RS-232C
Последовательный интерфейс для передачи данных использует одну сигнальную линию, по которой информационные биты передаются друг за другом последовательно. В ряде последовательных интерфейсов применяется гальваническая развязка внешних сигналов от схемной земли устройства, что позволяет соединять устройства, находящиеся под разными потенциалами. Последовательная передача данных может осуществляться в асинхронном или синхронном режимах. При асинхронной передаче каждому байту предшествует старт-бит, сигнализирующий приемнику о начале посылки, за которым следуют биты данных и, возможно, бит паритета (четности). Завершает посылку стоп-бит, гарантирующий паузу между посылками (рис. 1). Старт-бит следующего байта посылается в любой момент после стоп-бита, то есть между передачами возможны паузы произвольной длительности. Старт-бит, имеющий всегда строго определенное значение (логический 0), обеспечивает простой механизм синхронизации приемника по сигналу от передатчика. Подразумевается, что приемник и передатчик работают на одной скорости обмена. Внутренний генератор синхронизации приемника использует счетчик-делитель опорной частоты, обнуляемый в момент приема начала старт-бита. Этот счетчик генерирует внутренние стробы, по которым приемник фиксирует последующие принимаемые биты. В идеале стробы располагаются в середине битовых интервалов, что позволяет принимать данные и при незначительном рассогласовании скоростей приемника и передатчика. Очевидно, что при передаче 8 бит данных, одного контрольного и одного стоп-бита предельно допустимое рассогласование скоростей, при котором данные будут распознаны верно, не может превышать 5%. С учетом фазовых искажений и дискретности работы внутреннего счетчика синхронизации реально допустимо меньшее отклонение частот. Чем меньше коэффициент деления опорной частоты внутреннего генератора (чем выше частота передачи), тем больше погрешность привязки стробов к середине битового интервала, и требования к согласованности частот становятся более строгими. Чем выше частота передачи, тем больше влияние искажений фронтов на фазу принимаемого сигнала. Взаимодействие этих факторов приводит к повышению требований к согласованности частот приемника и передатчика с ростом частоты обмена.
Рис.1. Формат асинхронной передачи
Формат асинхронной посылки позволяет выявлять возможные ошибки передачи: - если принят перепад, сигнализирующий о начале посылки, а по стробу старт-бита зафиксирован уровень логической единицы, старт-бит считается ложным и приемник снова переходит в состояние ожидания. Об этой ошибке приемник может и не сообщать. - если во время, отведенное под стоп-бит, обнаружен уровень логического нуля, фиксируется ошибка стоп-бита. - если применяется контроль четности, то после посылки бит данных передается контрольный бит. Этот бит дополняет количество единичных бит данных до четного или нечетного в зависимости от принятого соглашения. Прием байта с неверным значением контрольного бита приводит к фиксации ошибки. Контроль формата позволяет обнаруживать обрыв линии: при этом принимается логический нуль, который сначала трактуется как старт-бит, и нулевые биты данных, потом срабатывает контроль стоп-бита. Для асинхронного режима принят ряд стандартных скоростей обмена: 50, 75, 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600 и 115200 бит/с. Количество бит данных может составлять 5, 6, 7 или 8 (5- и 6-битные форматы распространены незначительно). Количество стоп-бит может быть 1, 1,5 или 2 ("полтора бита" означает только длительность стопового интервала). Синхронный режим передачи предполагает постоянную активность канала связи. Посылка начинается с синхробайта, за которым сразу же следует поток информационных бит. Если у передатчика нет данных для передачи, он заполняет паузу непрерывной посылкой байтов синхронизации. Очевидно, что при передаче больших массивов данных накладные расходы на синхронизацию в данном режиме будут ниже, чем в асинхронном. Однако в синхронном режиме необходима внешняя синхронизация приемника с передатчиком, поскольку даже малое отклонение частот приведет к искажению принимаемых данных. Внешняя синхронизация возможна либо с помощью отдельной линии для передачи сигнала синхронизации, либо с использованием самосинхронизирующего кодирования данных, при котором на стороне приемника из принятого сигнала могут быть выделены импульсы синхронизации.
На физическом уровне последовательный интерфейс имеет различные реализации, различающиеся способом передачи электрических сигналов. В большинстве стандартов сигнал представляется потенциалом. Существуют последовательные интерфейсы, где информативен ток, протекающий по общей цепи передатчик-приемник - "токовая петля". Для связи на короткие расстояния приняты стандарты беспроводной инфракрасной связи. Наибольшее распространение в PC получил простейший последовательный интерфейс - стандарт RS-232C, реализуемый СОМ -портами. В промышленной автоматике широко применяется RS-485. Интерфейс RS-232C предназначен для подключения аппаратуры, передающей или принимающей данные от оконечного оборудования данных (ООД, DTE - Data Terminal Equipment), к оконечной аппаратуре каналов данных (АКД, DCE - Data CommunicationEquipment). В роли АПД может выступать компьютер, принтер, плоттер и другое периферийное оборудование. В роли АКД обычно выступает модем. Конечной целью подключения является соединение двух устройств АПД. Полная схема соединения приведена на рис. 2. Интерфейс позволяет исключить канал удаленной связи вместе с парой устройств АПД, соединив устройства непосредственно с помощью нуль-модемного кабеля (рис. 3). Стандарт описывает управляющие сигналы интерфейса, пересылку данных, электрический интерфейс и типы разъемов. В стандарте предусмотрены асинхронный и синхронный режимы обмена, но СОМ -порты поддерживают только асинхронный режим..
Рис. 2. Полная схема соединения по RS-232C
Рис. 3. Соединение по RS-232C нуль-модемным кабелем Стандарт RS-232C использует несимметричные передатчики и приемники - сигнал передается относительно общего провода - схемной земли. Интерфейс НЕ ОБЕСПЕЧИВАЕТ ГАЛЬВАНИЧЕСКОЙ РАЗВЯЗКИ устройств. Логической единице соответствует напряжение на входе приемника в диапазоне -12...-3 В. Логическому нулю соответствует диапазон +3...+12В. Диапазон -3...+3В - зона нечувствительности, обусловливающая гистерезис приемника: состояние линии будет считаться измененным только после пересечения порога (рис. 4). Уровни сигналов на выходах передатчиков должны быть в диапазонах -12...-5 В и +5...+12 В для представления единицы и нуля соответственно.
Рис. 4. Прием сигналов RS-232C Стандарт RS-232C регламентирует типы применяемых разъемов. На аппаратуре АПД (в том числе на СОМ -портах) принято устанавливать вилки (male) DB-25P или более компактный вариант - DB-9P. Девятиштырьковые разъемы не имеют контактов для дополнительных сигналов, необходимых для синхронного режима (в большинстве 25-штырьковых разъемов эти контакты не используются). На аппаратуре АКД (модемах) устанавливают розетки (female) DB-25S или DB-9S. Если аппаратура АПД соединяется без модемов, то разъемы устройств (вилки) соединяются между собой нуль-модемным кабелем, имеющим на обоих концах розетки, контакты которых соединяются перекрестно.
|