Эскиз МФА ГП-502 приведена на рис2
Опыт эксплуатации абсорберов осушки газа типа ГП-252, ГП-502, показал высокую эффективность и надёжность их работы, в то время как в период макс отбора газа на местор-и потери ДЭГа были в 3-5 раза выше проектных. Это объясняется относительно малым диаметром аппарата, что обуславливало жёсткий режим его эксплуатации и большой величиной опорных конструкций. При модернизации были использованы технические рещения с разделением потока газа в массообменной секции аппарата на 2 части с применением насадок (кольца Рашера, сёдла Интолош) и с установкой перед фильтр-патронами дополнительной ступени фильтрации. Одна из наиболее удачных схем модернизации МФА 365 (ГПР 435) показана на рис.3 Суть модернизации заключалась в установке над контактно-сепарационными элементами треуг-о сечения, что позволило снизить фактор скорости газового потока до 6,76 в самой насадке против 25 в прямоточных центробежных элементах за счёт увеличения свободного сечения насадки. В дальнейшем создание ЦКБН новых высокоскоростных массообменных устройств (ГПР 340), позв-х осуществить конт-т газа с жидкой фазой непосред-о в прямот-м контактном сепар-м элементе с рецирк-й в нём жид-и дало возм-ь отказ-ся от прямот-х ситч-х тарелок и снизить общее гидрав-е сопротивление аппарата. МФА осушки газа ГП 778 (рис 4) диам-м 1800мм уменьшенной высоты произ-ю 10 млн.м3/сут с прямоточными контакно-сепарац-и устройствами ГПР 340 исп-ся на ряде сев-х местр-й, в част-и на УКПГ 3,4,6,7 ЯГКМ. Уменьшение высоты аппарата привело к повышению уноса абсорбента относительно других конструкций. Основное преимущество указанных устройств – это повышение их эффективности с увеличением расхода газа и допустимые высокие скорости газового потока. Недостаток – огр-й диап-н эффек-й работы. Для расширения диапазона эффективной работы абсорбеов с серийными центробежными контактными эл-и во всём необ-м интервале давлений и расходов, что особенно актуально для ПХГ ЦКБН было предложено вертикальное секционирование его массообменной части. 19. Краткая хар-ка методов подгот-ки Г к дальнему транспорту Уст-ки обраб-ки Г на промысле предназ-ы: 1) для подг-ки Г к дальнему трасп-ту; 2) для max извлечения у/в к-та. Выбор метода опр-ся рядом факторов: 1) фракционным составом Г, наличием в нем к-та; 2) сод-м влаги в газе; 3) сод-м в газе кислых комп-тов; 4) Р и t Г пласт-х усл-ях и на устье скв-н; 5) климатическими и почвенными усл-ми; 6) требованиями к составу и качеству Г при его исп-нии. НТС Наиболее широко прим-ся в практике промысловой обраб-ки Г на ГКМ НТС с дросселированием Г, однако при сущ-ей практике разр-и ГКМ на истощение, Pпл и Р на входе в УКПГ, падает. Этот способ м/б применен в чистом виде в начальный период разр-и, когда P на выходе из скв-ны существенно превышает P в начале ГПр-а. Низкая т/д-я эф-ть пр-са дросселир-я делает срок эф-го исп-я таких уст-к ограниченными. В дальнейшем t-й режим пр-са сеп-и нарушается, t сеп-и начинает возрастать. Естеств-го холода, получ-го в рез-те дросселир-я Г, становится недостаточно. Подключ-е дополнит-х водяных и возд-х т/о-ков может еще на нек-е время продлить срок службы существующих уст-к сеп-ии, но проблему не решает. В этом случае в схемах НТС исполь-ся холодильные машины, турбодетандерные агрегаты, позволяющих значительно увеличить эф-ть НТС. «+» НТС: 1) обесп-ет необх-ю т. росы по влаге и к-ту, достат-ю для трансп-та Г в средних широтах. 2) исп-ся энергия Г-го потока, поэтому пр-с НТС весьма экономичен, но не удается полностью извлечь у/в-й к-т и влагу.
|