Гельпроникающая (молекулярно-ситовая) хроматография
Гельпроникающая хроматография (ГПХ) представляет собой метод разделения молекул, основанный на различии из размеров. В качестве НФ в ГПХ используют частицы, имеющие определенные размеры пор. Это различного рода гели (мягкие, полужесткие и жесткие). В качестве ПФ служат водные или органические элюенты. Принцип разделения молекул в ГПХ состоит в том, что молекулы анализируемых веществ распределены между неподвижным растворителем в порах сорбента и растворителем, протекающим через слой НФ. Молекулы, которые имеют размеры, позволяющие им проникать в поры сорбента при движении вдоль колонки, часть времени теряют на пребывание в порах. Молекулы, имеющие размеры, превышающие размеры пор, не проникают в сорбент и вымываются из колонки со скоростью движения элюента. Молекулы, которые проникают в поры всех размеров, движутся наиболее медленно. Снижение скорости движения веществ вдоль колонки тем больше, чем в большее число пор способны диффундировать распределяемые частицы. Таким образом, при помощи ГПХ можно разделить смеси веществ в зависимости от размеров их молекул. Выход веществ из колонки происходит в порядке уменьшения их молекулярной массы. Так можно разделить полипептиды, белки и другие макромолекулы. Гельпроникающая хроматография на колонке используется для очистки пестицидов, а также жирорастворимых витаминов перед их определением методом ВЖХ. 3.6. Газовая хроматография
В газовой хроматографии (ГХ) в качестве ПФ используют инертный газ (азот, гелий, водород), называемый газом-носителем. Пробу подают в виде паров, неподвижной фазой служит или твердое вещество - сорбент (газо-адсорбционная хроматография) или высококипящая жидкость, нанесенная тонким слоем на твердый носитель (газожидкостная хроматография). Рассмотрим вариант газожидкостной хроматографии (ГЖХ). В качестве носителя используют кизельгур (диатомит) - разновидность гидратированного силикагеля, часто его обрабатывают реагентами, которые переводят группы Si-OH в группы Si-О-Si(CH3)3, что повышает инертность носителя по отношению к растворителям. Таковыми являются, например, носители “хромосорб W” и “газохромQ”. Кроме того, используют стеклянные микрошарики, тефлон и другие материалы. Неподвижную жидкую фазу наносят на твердый носитель. Эффективность разделения в газожидкостной хроматографии зависит главным образом от правильности выбора жидкой фазы. При этом полезным оказалось старое правило: “подобное растворяется в подобном”. В соответствии с этим правилом для разделения смеси двух веществ выбирают жидкую фазу, близкую по химической природе одному из компонентов. Подготовленный носитель помещают в спиральные колонки, имеющие диаметр 2 - 6 мм и длину до 20 м (набивные колонки). С 1957 года стали применять предложенные Голеем капиллярные колонки, имеющие диаметр 0,2 - 0,3 мм и длину в несколько десятков метров. В случае капиллярных колонок жидкая фаза наносится непосредственно на стенку этого капилляра, которая выполняет роль носителя. Применение капиллярных колонок способствует повышению чувствительности и эффективности разделения многокомпонентных смесей.
Анализ методом ГХ выполняют на газовом хроматографе, принципиальная схема которого приведена на рис. 3.6.1. Газ - носитель из баллона 1 с постоянной скоростью пропускают через хроматографическую систему. Пробу вводят микрошприцем в дозатор 2, который нагрет до температуры, необходимой для полного испарения хроматографируемого вещества. Пары анализируемой смеси захватываются потоком газа - носителя и поступают в хроматографическую колонку, температура которой поддерживается на требуемом для проведения анализа уровне (она может быть неизменной, или по необходимости меняться в заданном режиме). В колонке анализируемая смесь делится на компоненты, которые поочередно поступают в детектор. Сигнал детектора фиксируется регистратором (в виде пиков) и обрабатывается вычислительным интегратором. В ГХ используют детекторы, которые преобразуют в электрический сигнал изменения физических или физико-химических свойств газового потока, выходящего из колонки, по сравнению с чистым газом - носителем. Существует множество детекторов, однако широкое применение находят только те из них, которые обладают высокой чувствительностью и универсальностью. К таким относятся: катарометр (детектор по теплопроводности); пламенно-ионизационный детектор (ПИД), в котором водородное пламя служит источником ионизации органического соединения; детектор электронного захвата (ЭЗД); термоионный детектор (ТИД), который обладает высокой селективностью к органическим веществам, содержащим фосфор, азот и серу. Интерес к этому детектору заметно возрос в связи с заменой хлорсодержащих пестицидов на фосфорсодержащие ядохимикаты, используемые в сельском хозяйстве и попадающие затем в пищевые продукты. Катарометр позволяет определить концентрации веществ в пределах 0,1 - 0,01%, ПИД - 10-3 - 10-5%”; ЭЗД - 10-6 - 10-10%. Современные детекторы позволяют определять даже пикограммы (10-12 г) вещества в пробе. Качественный и количественный анализ в методе ГХ проводят так же, как и в ВЖХ. Газожидкостная хроматография находит широкое применение для разделения, идентификации и количественного определения сложных многокомпонентных систем, таких как нефть, биологические жидкости, пищевые продукты, парфюмерно-косметические изделия и многие другие. Метод отличается высокой чувствительностью, экспрессностью; для анализа не требуется большого количества исследуемого образца.
|