Спектрофотометры
Основное отличие спектрофотометра от фотоколориметра состоит в возможности пропустить через исследуемый образец световой поток любой требуемой длины волны, проводить фотометрические измерения, сканируя (просматривая) весь диапазон длин волн не только видимого (VIS) света — от 380 до 750 нм, но и ближнего ультрафиолета (UV) — от 200 до 380 нм. Целью упомянутого и очень важного режима работы спектрофотометров — режима сканирования — является построение спектральной кривой поглощения (абсорбции) и нахождение на ней пиков, а также исследование процессов интерференции и поиск ложных пиков, приводящих к ошибочным результатам при спектро-фотометрических исследованиях. Принцип работы спектрофотометра. Полихроматический свет от источника проходит через монохроматор, который разлагает белый свет на цветовые компоненты. Монохроматическое излучение с дискретным интервалом в несколько нанометров проходит через ту часть прибора, где располагается образец с исследуемой пробой. Спектрофотометр UV/VIS (ультрафиолет + видимый свет) имеет два источника света: для видимого участка спектра и источник ультрафиолета — от 100 до 390 нм. Источником видимого света служит вольфрамовая, как правило, галогенная лампа, дающая постоянный поток света в диапазоне 380— 950 нм, являясь стабильным и долговечным источником световой энергии со средним сроком службы более 500 ч. В качестве источника УФ используются водородные или дейтериевые лампы. Ультрафиолетовые лампы, содержащие дейтерий, имеют высокую интенсивность излучаемого потока и непрерывный спектр в диапазоне от 200 до 360 нм. Действие спектральных приборов — спектрофотометров — основано на том, что в некоторых физических системах условия прохождения света оказываются различными. Такие системы называются диспергирующими. Обычно в качестве диспергирующего элемента используют призму или дифракционную решетку. Устройства, позволяющие разделить полихроматический свет на монохроматический спектр излучения, называются монохроматорами. Дифракционная решетка технологически более сложное изделие, чем призма. Большинство применяемых в настоящее время решеток изготовлены способом выжигания и голографического копирования и представляют собой пластины с большим числом параллельных штрихов — до нескольких сот на миллиметр. Основным преимуществом использования призмы в спектрофотометре является ее низкая стоимость. Преимущество дифракционных решеток состоит в том, что они обеспечивают линейную дисперсию света на всем диапазоне видимого и УФ спектров. Отрицательным моментом применения •дифракционных решеток является их высокая стоимость в сравнении с призмами и светофильтрами. Одной из самых важных характеристик монохроматоров является полоса пропускания, выражаемая в единицах длин волн — нанометрах. Все сказанное выше в отношении кювет применительно к фотоколориметрам и фотометрам полностью относится и к спектрофотометрам. Специфичным остается только применение кварцевых кювет в случае работы спектрофотометров в УФ диапазоне, так как обычное стекло ультрафиолетовое излучение поглощает. В спектрофотометрах также применяются одноразовые кюветы из пластика, прозрачного для УФ. Детекторы. Применение кремниевых фотодиодных матриц в современных моделях спектрофотометров позволяет повысить характеристики точности и быстродействия, расширить возможности выбора полос пропускания. Использование в спектрофотометрах излучения в УФ диапазоне накладывает повышенные требования на чувствительность детектора. При этом предпочтение, как правило, отдается фотоумножителям как более чувствительным вариантам построения детектора. В отношении считывающих или выходных устройств спектрофотометров обычно выдвигаются более высокие требования по сравнению с требованиями к аналогичным устройствам фотоколориметров или фотометров(дисплеи,записывающие устройства, интерфейсы). Это связано прежде всего с задачами построения спектров, их анализа и наглядного представления, документирования и архивирования результатов. Важно подчеркнуть, что основные принципы действия спектрофотометра, отдельные оптико-механические схемы, блоки и узлы находят свое применение в различных специализированных приборах и автоматических анализаторах для клинических биохимических исследований.
|