Турбидиметрический метод анализа
Данный вид исследования мутных сред основан на измерении изменения интенсивности потока световой энергии, прошедшего через дисперсную систему. Изменение потока световой энергии вызвано как поглощением, так и его рассеянием дисперсной системой. Метод аналогичен колориметрическому методу, но в ряде случаев измерение может происходить в потоке «белого света» без применения полосовых фильтров. С точки зрения чувствительности метода, в частности при определении концентрации иммуноглобулинов, сравнение нефелометрии и турбидиметрии оказывается в пользу нефелометрии, т.к. этот метод более чувствителен, когда небольшое количество взвешенных частиц приводит к заметному возрастанию сигнала при незначительном фоне. Повышение чувствительности нефелометрических исследований и их распространение в иммунологии с использованием современных автоматизированных нефелометров явилось следствием ряда причин. Частично это обусловлено введением полимеров в смесь с образцом. Частично — эффективным выделением фонового рассеяния, непосредственно вызванного комплексами антиген—антитело. Большинство современных приборов может определять и отслеживать «избыток» антигенов автоматически. Влияние фонового рассеяния уменьшено в ряде приборов отказом от измерения рассеяния под углом 90° и электронным вычитанием фоновых сигналов (скоростная нефелометрия). Преимущество турбидиметрического анализа заключается в том, что измерения могут быть выполнены практически на любом колориметре или фотометре. Повышение чувствительности турбидиметрических исследований может быть достигнуто за счет использования спектрофотометров с высококачественными детекторами. Основные компоненты, которые используются при построении нефелометрических и турбидиметрических приборов, похожи и включают источник света, фильтр и фокусирующую световой поток систему линз, кювету с образцом и детектор с устройствами отображения и регистрации результата. В качестве источника света обычно используются ртутные дуговые, лампы, вольфрамойодистые лампы и гелий-неоновые лазеры. Лазеры излучают монохроматический свет, сконцентрированный в узкий и интенсивный луч. Однако лазеры очень дороги и могут излучать ограниченный набор фиксированых по частоте волн. Флуориметрическии анализ Если световая энергия, поглощенная атомами или молекулами, отдается ими в виде светового же излучения, то такое явление называется флуоресценцией. Спектр излучения флуоресценции многих веществ носит избирательный характер. Как и в случае спектров поглощения, избирательность обусловлена структурой и составом излучающего вещества. Спектры излучения растворов при флуоресцентных измерениях состоят, как правило, из широкой полосы с максимумом при некоторой длине волны. Кроме веществ, дающих широкие полосы излучения, встречаются вещества с хорошо выраженной колебательной структурой спектра. Спектр излучения не зависит от длины волны возбуждающего света. Это правило показывает, что спектр флуоресценции характеризует исследуемое вещество и является основой для обнаружения и идентификации этих веществ. Вторым правилом является правило Стокса, согласно которому спектр флуоресценции и его максимум по сравнению со спектром абсорбции смещен в сторону больших длин волн. Например, растворы, облученные световой энергией в ультрафиолетовом диапазоне, могут флуоресцировать любым светом, а растворы, флуоресценция которых возбуждается зеленым светом, не могут светиться фиолетовым и синим, а только желтым и красным, словом, таким светом, который соответствует большим длинам волн. Количественное преобразование возбуждающей энергии в энергию флуоресценции определяется выходом флуоресценции. Энергетический выход флуоресценции зависит от соотношения длин волн поглощения и излучения. Учитывая многочисленные физико-химические факторы отклонения от пропорциональности энергии поглощения и энергии флуоресценции от концентрации исследуемого раствора, при практических определениях концентрации раствора по световой энергии требуется предварительное построение градуировочных кривых. Градуировочная кривая строится по результатам измерений флюоресценции растворов с известной концентрацией. Основным достоинством флуоресцентных методов анализа по сравнению с другими фотометрическими методами является их высокая чувствительность.
|