Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение определителя. Основные свойства определителя (равноправие строк и столбцов, линейность, кососимметричность определителя).





Определитель – это некоторое число поставленное в соответствие квадратной матрице.

Для неквадратных матриц понятие определителя не вводится.

 

Свойства:

 

1) Определитель — кососимметричная полилинейная функция строк (столбцов) матрицы. Полилинейность означает, что определитель линеен по всем строкам (столбцам): где и т. д. — строчки матрицы, — определитель такой матрицы.

2) При добавлении к любой строке (столбцу) линейной комбинации других строк (столбцов) определитель не изменится.

3) Если две строки (столбца) матрицы совпадают, то её определитель равен нулю.

4) Если две (или несколько) строки (столбца) матрицы линейно зависимы, то её определитель равен нулю.

5) Если переставить две строки (столбца) матрицы, то её определитель умножается на (-1).

6) Общий множитель элементов какого-либо ряда определителя можно вынести за знак определителя.

7) Если хотя бы одна строка (столбец) матрицы нулевая, то определитель равен нулю.

8) Сумма произведений всех элементов любой строки на их алгебраические дополнения равна определителю.

9) Сумма произведений всех элементов любого ряда на алгебраические дополнения соответствующих элементов параллельного ряда равна нулю.

4. Определение алгебраического дополнения. Теорема о разложении определителя по строке. Теорема об определителе произведения двух матриц.

Алгебраическим дополнением элемента матрицы называется число

,

где — дополнительный минор, определитель матрицы, получающейся из исходной матрицы путем вычёркивания i -й строки и j -го столбца.

Теорема Лапласа:

Пусть — квадратная матрица размера . Пусть также задан некоторый номер строки либо номер столбца матрицы . Тогда определитель может быть вычислен по следующим формулам:

Разложение по -й строке: Разложение по -му столбцу:

где — алгебраическое дополнение к минору, расположенному в строке с номером и столбце с номером . также называют алгебраическим дополнением к элементу .

Утверждение является частным случаем теоремы Лапласа. Достаточно в ней положить равным 1 и выбрать -ую строку, тогда минорами, расположенными в этой строке будут сами элементы.

Теорема:

Определитель произведения двух квадратных матриц А и В одного и того же порядка равен произведению их определителей:

det(A*B)=detA*detB

5. Определение обратной матрицы. Свойства обратной матрицы. Критерий обратимости матриц.

 

Матрица A называется обратимой, если существует такая матрица B, что AB=BA=E. Матрица B называется обратной к A и обозначается .

Замечание

Если матрица А обратима, то из равенства следует, что А квадратная матрица.

Свойства.

Пусть матрица А обратима, тогда

1. уществует единственная матрица обратная к А

2. и

3. Если , то также обратима и

4. также обратима и

5. Пусть матрица B так же обратима. Тогда матрица ABобратима и

Критерий обратимости.

Матрица обратима тогда и только тогда, когда . Более того справедлива формула







Дата добавления: 2015-09-07; просмотров: 2835. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия