Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение определителя. Основные свойства определителя (равноправие строк и столбцов, линейность, кососимметричность определителя).





Определитель – это некоторое число поставленное в соответствие квадратной матрице.

Для неквадратных матриц понятие определителя не вводится.

 

Свойства:

 

1) Определитель — кососимметричная полилинейная функция строк (столбцов) матрицы. Полилинейность означает, что определитель линеен по всем строкам (столбцам): где и т. д. — строчки матрицы, — определитель такой матрицы.

2) При добавлении к любой строке (столбцу) линейной комбинации других строк (столбцов) определитель не изменится.

3) Если две строки (столбца) матрицы совпадают, то её определитель равен нулю.

4) Если две (или несколько) строки (столбца) матрицы линейно зависимы, то её определитель равен нулю.

5) Если переставить две строки (столбца) матрицы, то её определитель умножается на (-1).

6) Общий множитель элементов какого-либо ряда определителя можно вынести за знак определителя.

7) Если хотя бы одна строка (столбец) матрицы нулевая, то определитель равен нулю.

8) Сумма произведений всех элементов любой строки на их алгебраические дополнения равна определителю.

9) Сумма произведений всех элементов любого ряда на алгебраические дополнения соответствующих элементов параллельного ряда равна нулю.

4. Определение алгебраического дополнения. Теорема о разложении определителя по строке. Теорема об определителе произведения двух матриц.

Алгебраическим дополнением элемента матрицы называется число

,

где — дополнительный минор, определитель матрицы, получающейся из исходной матрицы путем вычёркивания i -й строки и j -го столбца.

Теорема Лапласа:

Пусть — квадратная матрица размера . Пусть также задан некоторый номер строки либо номер столбца матрицы . Тогда определитель может быть вычислен по следующим формулам:

Разложение по -й строке: Разложение по -му столбцу:

где — алгебраическое дополнение к минору, расположенному в строке с номером и столбце с номером . также называют алгебраическим дополнением к элементу .

Утверждение является частным случаем теоремы Лапласа. Достаточно в ней положить равным 1 и выбрать -ую строку, тогда минорами, расположенными в этой строке будут сами элементы.

Теорема:

Определитель произведения двух квадратных матриц А и В одного и того же порядка равен произведению их определителей:

det(A*B)=detA*detB

5. Определение обратной матрицы. Свойства обратной матрицы. Критерий обратимости матриц.

 

Матрица A называется обратимой, если существует такая матрица B, что AB=BA=E. Матрица B называется обратной к A и обозначается .

Замечание

Если матрица А обратима, то из равенства следует, что А квадратная матрица.

Свойства.

Пусть матрица А обратима, тогда

1. уществует единственная матрица обратная к А

2. и

3. Если , то также обратима и

4. также обратима и

5. Пусть матрица B так же обратима. Тогда матрица ABобратима и

Критерий обратимости.

Матрица обратима тогда и только тогда, когда . Более того справедлива формула







Дата добавления: 2015-09-07; просмотров: 2835. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия